35 research outputs found

    High Field Magnetization in Manganese Intermetallic Compounds(Magnetism)

    Get PDF
    Magnetization measurements were carried out on manganese intermetallic compounds Mn_3MC(M=Ga, Zn), Mn_Co_xSb(x=0.09 and 0.15) and MnMX(M=Ru, Rh, Pd;X=As, P)in magnetic fields up to 150 or 320 kOe. Antiferromagnetic(AF)-ferromagnetic(F) field-induced transitions and (AF+F)-(F) one were observed for Mn_3GaC and Mn_3ZnC, respectively. For Mn_Co_Sb, intermediate(I)- ferrimagnetic(Fr) field-induced transitions were observed. For Mn_Co_Sb, AF-Fr field-induced transitions were observed. These transitions were of the first order except one of Mn_3ZnC. The magnetic properties of MnMX (M=Ru, Rh, Pd;X=As, P) were discussed on the basis of the values of magnetization and high-field magnetic susceptibility

    High Pressure Apparatus for Angle Dispersive Neutron Diffraction

    Get PDF
    A piston-cylinder type high pressure apparatus was designed for the angle dispersive neutron diffraction. A Ti-53wt% Zr alloy was used for the cylinder. The performance was tested by observing the structural transformation under pressure in RbBr from an NaCl-type to a CsCl-type

    Field Induced Transitions in Rare Earth Intermetallic Compounds RX and RX_2 (R=Er, Ho, Dy, Tb and Gd and X=Ag and Au)(Magnetism)

    Get PDF
    Rare earth intermetallic compounds RX and RX_2 ( R=Gd, Tb, Dy, Ho and Er : X=Ag and Au) are antiferromagnetic compounds with the CsCl-type crystal structure and the MoSi_2-type one, respectively. Magnetization process is investigated for these compounds under static magnetic fields up to 270 kOe and pulsed ones up to 300 kOe. The observed field induced transitions are reviewed together with their magnetic phase diagrams

    Distance determination of molecular clouds in the 1st quadrant of the Galactic plane using deep learning : I. Method and Results

    Full text link
    Machine learning has been successfully applied in varied field but whether it is a viable tool for determining the distance to molecular clouds in the Galaxy is an open question. In the Galaxy, the kinematic distance is commonly employed as the distance to a molecular cloud. However, there is a problem in that for the inner Galaxy, two different solutions, the ``Near'' solution, and the ``Far'' solution, can be derived simultaneously. We attempted to construct a two-class (``Near'' or ``Far'') inference model using a Convolutional Neural Network (CNN), a form of deep learning that can capture spatial features generally. In this study, we used the CO dataset toward the 1st quadrant of the Galactic plane obtained with the Nobeyama 45-m radio telescope (l = 62-10 degree, |b| < 1 degree). In the model, we applied the three-dimensional distribution (position-position-velocity) of the 12CO (J=1-0) emissions as the main input. The dataset with ``Near'' or ``Far'' annotation was made from the HII region catalog of the infrared astronomy satellite WISE to train the model. As a result, we could construct a CNN model with a 76% accuracy rate on the training dataset. By using the model, we determined the distance to molecular clouds identified by the CLUMPFIND algorithm. We found that the mass of the molecular clouds with a distance of < 8.15 kpc identified in the 12CO data follows a power-law distribution with an index of about -2.3 in the mass range of M >10^3 Msun. Also, the detailed molecular gas distribution of the Galaxy as seen from the Galactic North pole was determined.Comment: 29 pages, 12 figure

    Change in brain plasmalogen composition by exposure to prenatal undernutrition leads to behavioral impairment of rats.

    Get PDF
    Epidemiological studies suggest that poor nutrition during pregnancy influences offspring predisposition to experience developmental and psychiatric disorders. Animal studies have shown that maternal undernutrition leads to behavioral impairment, which is linked to alterations in monoaminergic systems and inflammation in the brain. In this study, we focused on the ethanolamine plasmalogen of the brain as a possible contributor to behavioral disturbances observed in offspring exposed to maternal undernutrition. Maternal food or protein restriction between gestational day (GD) 5.5 and GD 10.5 resulted in hyperactivity of rat male adult offspring. Genes related to the phospholipid biosynthesis were found to be activated in the prefrontal cortex (PFC), but not in the nucleus accumbens or striatum, in the offspring exposed to prenatal undernutrition. Corresponding to these gene activations, increased ethanolamine plasmalogen (18:0p-22:6) was observed in the PFC using mass spectrometry imaging. A high number of crossings and the long time spent in the center area was observed in the offspring exposed to prenatal undernutrition and was mimicked in adult rats via the intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome. Additionally, plasmalogen (18:0p-22:6) increased only in the PFC, and not in the nucleus accumbens or striatum. These results suggest that brain plasmalogen is one of the key molecules to control behavior and its injection using liposome is a potential therapeutic approach for cognitive impairment.Significance Statement:Maternal undernutrition correlates to developmental and psychiatric disorders. Here, we found that maternal undernutrition in early pregnancy led to hyperactivity in rat male offspring and induced gene activation of phospholipid-synthesizing enzyme and elevation of ethanolamine plasmalogen (18:0p-22:6) level in the prefrontal cortex (PFC). Intravenous injection of ethanolamine plasmalogen (18:0p-22:6) incorporated into the liposome maintained crossing activity and was circumscribed to the center area for a long time period, in prenatally undernourished offspring with aberrant behavior. Furthermore, the amount of ethanolamine plasmalogen (18:0p-22:6) increased in the PFC of the rat after injection. Our result suggests that brain plasmalogen is one of the key molecules to control behavior and that its injection using liposome is a potential therapeutic approach for cognitive impairment

    Pressure Effect on the Magnetic Transition in Mn-Compounds

    No full text
    In the ferromagnetic compounds Ni_2MnSn (Heusler type) and PtMnSn (C1_b-type), the sign of the spontaneous volume striction is measured as negative and dT_c/dP is positive. The signs are opposite to those in NiAs-type Mn-compounds, in which the Mn-Mn distance is comparatively small. These facts are discussed on the basis of an argument that the ferromagnetic interaction is stabilized by contraction or extension of the Mn-Mn distance to adjust the overlapping of d-shells
    corecore