6 research outputs found

    Vitamin E: A Role in Signal Transduction

    No full text
    Vitamin E modulates the activity of several signal transduction enzymes with consequent alterations of gene expression. At the molecular level, vitamin E may directly bind to these enzymes and compete with their substrates, or it may change their activity by redox regulation. The translocation of several of these enzymes to the plasma membrane is regulated by vitamin E, suggesting the modulation of protein-membrane interactions as a common mechanism for vitamin E action. Enzyme-membrane interactions can be affected by vitamin E by interference with binding to specific membrane lipids or by altering cellular structures such as membrane microdomains (lipid rafts). Moreover, competition by vitamin E for common binding sites within lipid transport proteins may alter the traffic of lipid mediators and thus affect their signaling and enzymatic conversion. In this review, the main effects of vitamin E on enzymes involved in signal transduction are summarized and possible molecular mechanisms leading to enzyme modulation are evaluated

    Increased Amyloid-β Peptide-Induced Memory Deficits in Phospholipid Transfer Protein (PLTP) Gene Knockout Mice

    No full text
    Oxidative stress is recognized as one of the earliest and most intense pathological processes in Alzheimer's disease (AD), and the antioxidant vitamin E has been shown to efficiently prevent amyloid plaque formation and neurodegeneration. Plasma phospholipid transfer protein (PLTP) has a major role in vitamin E transfers in vivo, and PLTP deficiency in mice is associated with reduced brain vitamin E levels. To determine the impact of PLTP on amyloid pathology in vivo, we analyzed the vulnerability of PLTP-deficient (PLTP-KO) mice to the toxic effects induced by intracerebroventricular injection of oligomeric amyloid-β(25–35) (Aβ(25–35)) peptide, a non-transgenic model of AD. Under basal conditions, PLTP-KO mice showed increased cerebral oxidative stress, increased brain Aβ(1–42) levels, and a lower expression of the synaptic function marker synaptophysin, as compared with wild-type mice. This PLTP-KO phenotype was associated with increased memory impairment 1 week after Aβ(25–35) peptide injection. Restoration of brain vitamin E levels in PLTP-KO mice through a chronic dietary supplementation prevented Aβ(25–35)-induced memory deficits and reduced cerebral oxidative stress and toxicity. We conclude that PLTP, through its ability to deliver vitamin E to the brain, constitutes an endogenous neuroprotective agent. Increasing PLTP activity may offer a new way to develop neuroprotective therapies
    corecore