7 research outputs found

    Argania spinosa Leaves and Branches: Antiaggregant, Anticoagulant, Antioxidant Activities and Bioactive Compounds Quantification

    Get PDF
    Thrombocytes, also known as platelets, are crucial in maintaining the balance between blood clotting. Platelet hyperactivity and oxidative stress are the primary factors contributing to cardiovascular complications. Antithrombotic therapy remains one of the most effective treatments, but various potential side effects hinder its effectiveness, including the risk of haemorrhage. Intense research has been conducted on medicinal plants to discover the natural antithrombotic compounds. Argania spinosa, commonly known as the argan tree or argan oil tree, is a native species of southwestern Morocco. This study evaluated the primary and secondary hemostasis and antioxidant activity of leaf and branch aqueous extracts of A. spinosa and also assessed the phytochemical composition of these extracts. Platelet aggregation assay was performed using washed platelets stimulated with thrombin. For plasmatic coagulation, activated partial thromboplastin time and prothrombin time were measured using the poor plasma method. Bleeding time was evaluated by inducing bleeding at the tip of a mouse tail. The antioxidant activity of the extracts was determined through the DPPH, β-carotene, and FRAP methods. The presence or absence of the secondary metabolites was carried out with the help of specific reagents, and the quantitative analysis was carried out using spectrophotometric and colorimetric methods. The study results revealed the presence of phenols, total flavonoids, cardiac glycosides, tannins, and coumarins type of secondary metabolites in both types of aqueous extracts and a higher concentration of these was recorded in the leaves extracts. Both aqueous extracts significantly reduced in vitro thrombin-induced platelet aggregation, extended tail bleeding time, prolonged activated partial thromboplastin and prothrombin time and exhibited remarkable antioxidant activity. The leaf extract of A. spinosa exerts significant effects against thrombotic manifestations and could be a promising source of new antithrombotic compounds

    Evaluation of Acute and Subacute Toxicity and LC-MS/MS Compositional Alkaloid Determination of the Hydroethanolic Extract of Dysphania ambrosioides (L.) Mosyakin and Clemants Flowers

    No full text
    Dysphania ambrosioides (L.) Mosyakin and Clemants is a medicinal plant that has traditionally been used to cure a range of diseases. There has been no thorough investigation of the potential toxicity of this plant. The objective of this study is to assess the acute and subacute toxicity of D. ambrosioides hydroethanolic extract (DAHE), as well as it alkaloids composition, utilizing LC-MS/MS analysis. An in silico approach was applied to determine pharmacokinetic parameters and to predict the toxicity of D. ambrosioides identified alkaloids. A 14-day treatment with a single oral dose of 1–7 g/kg was carried out to investigate acute toxicity. DAHE was given orally at dosages of 5, 50, and 500 mg/kg for 15 days in the subacute toxicity investigation, and body weight and biochemical parameters were evaluated. Livers, kidneys, lungs, and heart were examined histologically. Chromatographic investigation revealed the existence of nine alkaloids, with N-formylnorgalanthamine being the most prevalent. The oral LD50 value of DAHE was found to be 5000 mg/kg in an acute toxicity study. No variations were observed with respect to food intake, water consumption, mortality, or body and organ weight in the subacute toxicity study. On the other hand, DAHE (500 mg/kg) significantly enhanced alanineaminotransferase, aspartate aminotransferase, and urea. Liver and kidney histological examinations revealed modest infiltration of hepatocyte trabeculae by inflammatory cells in the liver and slight alteration in the kidney histoarchitecture. According to our findings, DAHE exhibits low to moderate toxicity

    Evaluation of Acute and Subacute Toxicity and LC-MS/MS Compositional Alkaloid Determination of the Hydroethanolic Extract of <i>Dysphania ambrosioides</i> (L.) Mosyakin and Clemants Flowers

    No full text
    Dysphania ambrosioides (L.) Mosyakin and Clemants is a medicinal plant that has traditionally been used to cure a range of diseases. There has been no thorough investigation of the potential toxicity of this plant. The objective of this study is to assess the acute and subacute toxicity of D. ambrosioides hydroethanolic extract (DAHE), as well as it alkaloids composition, utilizing LC-MS/MS analysis. An in silico approach was applied to determine pharmacokinetic parameters and to predict the toxicity of D. ambrosioides identified alkaloids. A 14-day treatment with a single oral dose of 1–7 g/kg was carried out to investigate acute toxicity. DAHE was given orally at dosages of 5, 50, and 500 mg/kg for 15 days in the subacute toxicity investigation, and body weight and biochemical parameters were evaluated. Livers, kidneys, lungs, and heart were examined histologically. Chromatographic investigation revealed the existence of nine alkaloids, with N-formylnorgalanthamine being the most prevalent. The oral LD50 value of DAHE was found to be 5000 mg/kg in an acute toxicity study. No variations were observed with respect to food intake, water consumption, mortality, or body and organ weight in the subacute toxicity study. On the other hand, DAHE (500 mg/kg) significantly enhanced alanineaminotransferase, aspartate aminotransferase, and urea. Liver and kidney histological examinations revealed modest infiltration of hepatocyte trabeculae by inflammatory cells in the liver and slight alteration in the kidney histoarchitecture. According to our findings, DAHE exhibits low to moderate toxicity

    Antibacterial and Antioxidant Activity of <i>Dysphania ambrosioides</i> (L.) Mosyakin and Clemants Essential Oils: Experimental and Computational Approaches

    No full text
    Dysphania ambrosioides (L.) Mosyakin and Clemants, also known as Mexican tea, and locally known as Mkhinza, is a polymorphic annual and perennial herb, and it is widely used in folk medicine to treat a broad range of illnesses in Morocco. The aim of this study was to determine the phytochemical content and the antioxidant and the antibacterial properties of essential oils isolated from D. ambrosioides aerial components, growing in Eastern Morocco (Figuig). Hydrodistillation was used to separate D. ambrosioides essential oils, and the abundance of each phytocompound was determined by using Gas Chromatography coupled with Mass Spectrometry (GC–MS). In vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and inhibition of β-carotene/linoleic acid bleaching assays were used to determine D. ambrosioides essential oils’ antioxidant activity. The findings revealed relative antioxidative power and modest radical scavenging. The antibacterial activity of the essential oils was broad-spectrum, with Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis as the most susceptible strains tested. To elucidate the physicochemical nature, drug-likeness, and the antioxidant and antibacterial action of the identified phytocomponents, computational techniques, such as ADMET analysis, and molecular docking were used

    Phytochemical Analysis, Antispasmodic, Myorelaxant, and Antioxidant Effect of Dysphania ambrosioides (L.) Mosyakin and Clemants Flower Hydroethanolic Extracts and Its Chloroform and Ethyl Acetate Fractions

    No full text
    Dysphania ambrosioides (L.) Mosyakin and Clemants is an annual or ephemeral perennial herb used traditionally in the Mediterranean region in folk medicine to treat various illnesses, including those related to the digestive system. This study aims to assess the antispasmodic, myorelaxant, and antioxidant effects of D. ambrosioides flower hydroethanolic extract and its chloroform and ethyl acetate fractions in a comparative study to evaluate the result of the extraction type on the potential activity of the extract. Both rat and rabbit jejunum were used to evaluate the antispasmodic and myorelaxant effect, while the antioxidant effect was evaluated using DPPH, a ferric reducing power assay, and a beta-carotene bleaching test. LC/MS-MS analysis was carried out to reveal the composition of the different types of extract. Following the results, the hydroethanolic extract showed a significant myorelaxant effect (IC50 = 0.39 &plusmn; 0.01 mg/mL). Moreover, it was shown that the hydroethanolic extract demonstrated the best antispasmodic activity (IC50 = 0.51 &plusmn; 0.05 mg/mL), followed by the ethyl acetate (IC50 = 4.05 &plusmn; 0.32 mg/mL) and chloroform (IC50 = 4.34 &plusmn; 0.45 mg/mL) fractions. The antioxidant tests showed that the hydroethanolic extract demonstrated high antioxidant activity, followed by the ethyl acetate and chloroform fractions. The LC/MS-MS analysis indicates that the plant extract was rich in flavonoids, to which the extract activity has been attributed. This study supports the traditional use of this plant to treat digestive problems, especially those with spasms

    Phytochemical, Antioxidant Activity, and Toxicity of Wild Medicinal Plant of Melitotus albus Extracts, <i>In Vitro</i> and <i>In Silico</i> Approaches

    No full text
    Morocco is known for its high plant biodiversity, but many plants are poorly valorized. For this reason, this study aims to valorize the methanolic and aqueous extracts of Melitotus albus leaves by studying their antioxidant activity and toxicity. The extracts’ antioxidant activity is assessed using the FRAP, DPPH, CAT, and ABTS methods. The chemical composition was determined using LC–MS analysis and evaluated using in silico studies. The results revealed that the total polyphenol content of the aqueous extract, 259.26 ± 7.79 (mg GAE/g), is higher than that of the methanolic extract, 131.41 ± 12.64 (mg GAE/g). The antioxidant activity by the methods of DPPH, ABTS, and phosphor molybdenum of aqueous extracts (0.087 ± 0.015, 0.014 ± 0.001 and 6.157 ± 1.050 mg eq vit C/g, respectively) is greater than that of methanolic extracts (0.107 ± 0.02, 0.167 ± 0.03, and 0.453 ± 0.014 mg eq vit C/g, respectively). The reducing power of iron (FRAP) shows that the methanolic extract has a greater reducing power than that of the aqueous extract with a low IC50 (0.011 ± 0.003 and 0.199 ± 0.016 mg/mL, respectively). The study of acute and subacute toxicity shows that the administration of the aqueous extract of M. albus at different doses increases the body weight of rats without modifying their general behavior. The M. albus extract had a 99.99% total phenolic content, as determined by LC–MS, consisting of 12 different components. The primary constituents of the extract are chlorogenic acid (43.68%), catechin/epicatechin (24.82%), quercetin-3-O-glucuronic acid (9.91%), naringin (7.64%), and p-hydroxybenzoic/salicylic acid (2.95%). The in-silico study showed that these compounds can passively permeate through the blood and have a beneficial effect on various organs of the body. Based on these results, M. albus can be used as a medicinal plant in phytotherapy, cosmetics, or as a dietary supplement. The bioactive compounds of these plants will require a lot of further effort in terms of isolation and characterization
    corecore