38 research outputs found

    筑波大学工学システム学類における熱力学の教育改善

    Get PDF

    Oscillation of a rotating levitated droplet: Analysis with a mechanical model

    Get PDF
    A droplet of millimeter-to-centimeter scale can exhibit electrostatic levitation, and such levitated droplets can be used for the measurement of the surface tension of the liquids by observing the characteristic frequency of oscillatory deformation. In the present study, a simple mechanical model is proposed by considering a single mode of oscillation in the ellipsoidal deformation of a levitated rotating droplet. By measuring the oscillation frequency with respect to the rotational speed and oscillation amplitude, it is expected that the accuracy of the surface tension measurement could be improved. Using the proposed model, the dependences of the characteristic frequency of oscillatory deformation and the averaged aspect ratio are calculated with respect to the rotational angular velocity of a rotating droplet. These dependences are found to be consistent with the experimental observations

    Weakly nonlinear focused ultrasound in viscoelastic media containing multiple bubbles

    No full text
    To facilitate practical medical applications such as cancer treatment utilizing focused ultrasound and bubbles, a mathematical model that can describe the soft viscoelasticity of human body, the nonlinear propagation of focused ultrasound, and the nonlinear oscillations of multiple bubbles is theoretically derived and numerically solved. The Zener viscoelastic model and Keller–Miksis bubble equation, which have been used for analyses of single or few bubbles in viscoelastic liquid, are used to model the liquid containing multiple bubbles. From the theoretical analysis based on the perturbation expansion with the multiple-scales method, the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation, which has been used as a mathematical model of weakly nonlinear propagation in single phase liquid, is extended to viscoelastic liquid containing multiple bubbles. The results show that liquid elasticity decreases the magnitudes of the nonlinearity, dissipation, and dispersion of ultrasound and increases the phase velocity of the ultrasound and linear natural frequency of the bubble oscillation. From the numerical calculation of resultant KZK equation, the spatial distribution of the liquid pressure fluctuation for the focused ultrasound is obtained for cases in which the liquid is water or liver tissue. In addition, frequency analysis is carried out using the fast Fourier transform, and the generation of higher harmonic components is compared for water and liver tissue. The elasticity supresses the generation of higher harmonic components and promotes the remnant of the fundamental frequency components. This indicates that the elasticity of liquid suppresses shock wave formation in practical applications

    気泡振動の能動的制御による水中衝撃波のソリトン遷移を狙う非線形音響理論

    Get PDF
    科学研究費助成事業 研究成果報告書:若手研究(B)2014-2016課題番号 : 2682004
    corecore