3,926 research outputs found

    Exploring the diffeomorphism invariant Hilbert space of a scalar field

    Get PDF
    As a toy model for the implementation of the diffeomorphism constraint, the interpretation of the resulting states, and the treatment of ordering ambiguities in loop quantum gravity, we consider the Hilbert space of spatially diffeomorphism invariant states for a scalar field. We give a very explicit formula for the scalar product on this space, and discuss its structure. Then we turn to the quantization of a certain class of diffeomorphism invariant quantities on that space, and discuss in detail the ordering issues involved. On a technical level these issues bear some similarity to those encountered in full loop quantum gravity.Comment: 20 pages, no figures; v3: corrected typos, added reference, some clarifications added; version as published in CQ

    The Proca-field in Loop Quantum Gravity

    Get PDF
    In this paper we investigate the Proca-field in the framework of Loop Quantum Gravity. It turns out that the methods developed there can be applied to the symplectically embedded Proca-field, giving a rigorous, consistent, non-perturbative quantization of the theory. This can be achieved by introducing a scalar field, which has completely different properties than the one used in spontaneous symmetry breaking. The analysis of the kernel of the Hamiltonian suggests that the mass term in the quantum theory has a different role than in the classical theory.Comment: 15 pages. v2: 19 pages, amended sections 2 and 6, references added v3: 20 pages, amended section 6 and minor correction

    The Marmara Sea Gateway since ~16 ky BP: non-catastrophic causes of paleoceanographic events in the Black Sea at 8.4 and 7.15 ky BP

    Get PDF
    The Late Quaternary history of connection of the Black Sea to the Eastern Mediterranean has been intensely debated. Ryan, Pitman and coworkers advocate two pulses of outflow from the Black Sea to the world ocean at ~16–14.7 ky BP and ~11–10 ky BP. From ~14.7–11 ky BP and from ~10–8.4 ky BP, they suggest that the level of the Black Sea fell to ~ -100 m. At 8.4 ky BP, they further claim that a catastrophic flood occurred in a geological instant, refilling the Black Sea with saline waters from the Mediterranean. In contrast, we continue to gather evidence from seismic profiles and dated cores in the Marmara Sea which demonstrate conclusively that the proposed flood did not occur. Instead, the Black Sea has been at or above the Bosphorus sill depth and flowing into the world ocean unabated since ~10.5 ky BP. This conclusion is based on continuous Holocene water-column stratification (leading to sapropel deposition in the Marmara Sea and the Aegean Sea), proxy indicators of sea-surface salinity, and migration of endemic species across the Bosphorus in both directions whenever appropriate hydrographic conditions existed in the strait. The two pulses of outflow documented by Ryan, Pitman and coworkers find support in our data, and we have modified our earlier interpretations so that these pulses now coincide with the development of mid-shelf deltas: \Delta 2 (16–14.7 ky BP) and \Delta 1 (10.5–9 ky BP) at the southern end of the Bosphorus Strait. However, continued Black Sea outflow after 9 ky BP prevented the northward advection of Mediterranean water and the entry of open-marine species into the Black Sea for more than 1000 years. Sufficient Mediterranean water to change the Sr-isotopic composition of slope and shelf water masses was not available until ~8.4 ky BP (along with the first arrival of many varieties of marine fauna and flora), whereas euryhaline molluscs did not successfully populate the Black Sea shelves until ~7.15 ky BP. Instead of relying on catastrophic events, we recognize a slow, progressive reconnection of the Black Sea to the world ocean, accompanied by significant time lags

    Polymer quantization of the free scalar field and its classical limit

    Full text link
    Building on prior work, a generally covariant reformulation of free scalar field theory on the flat Lorentzian cylinder is quantized using Loop Quantum Gravity (LQG) type `polymer' representations. This quantization of the {\em continuum} classical theory yields a quantum theory which lives on a discrete spacetime lattice. We explicitly construct a state in the polymer Hilbert space which reproduces the standard Fock vacuum- two point functions for long wavelength modes of the scalar field. Our construction indicates that the continuum classical theory emerges under coarse graining. All our considerations are free of the "triangulation" ambiguities which plague attempts to define quantum dynamics in LQG. Our work constitutes the first complete LQG type quantization of a generally covariant field theory together with a semi-classical analysis of the true degrees of freedom and thus provides a perfect infinite dimensional toy model to study open issues in LQG, particularly those pertaining to the definition of quantum dynamics.Comment: 58 page

    Submillimeter-wave emission of three Galactic red novae: cool molecular outflows produced by stellar mergers

    Full text link
    Red novae are optical transients erupting at luminosities typically higher than those of classical novae. Their outbursts are believed to be caused by stellar mergers. We present millimeter/submillimeter-wave observations with ALMA and SMA of the three best known Galactic red novae, V4332 Sgr, V1309 Sco, and V838 Mon. The observations were taken 22, 8, and 14 yr after their respective eruptions and reveal the presence of molecular gas at excitation temperatures of 35-200 K. The gas displays molecular emission in rotational transitions with very broad lines (full width \sim400 km\s). We found emission of CO, SiO, SO, SO2_2 (in all three red novae), H2_2S (covered only in V838 Mon) and AlO (present in V4332 Sgr and V1309 Sco). No anomalies were found in the isotopic composition of the molecular material and the chemical (molecular) compositions of the three red novae appear similar to those of oxygen-rich envelopes of classical evolved stars (RSGs, AGBs, post-AGBs). The minimum masses of the molecular material that most likely was dispersed in the red-nova eruptions are 0.1, 0.01, and 104^{-4} M_{\odot} for V838 Mon, V4332 Sgr, and V1309 Sco, respectively. The molecular outflows in V4332 Sgr and V1309 Sco are spatially resolved and appear bipolar. The kinematic distances to V1309 Sco and V4332 Sgr are 2.1 and 4.2 kpc, respectively. The kinetic energy stored in the ejecta of the two older red-nova remnants of V838 Mon and V4332 Sgr is of order 104610^{46} erg, similar to values found for some post-AGB (pre-PN) objects whose bipolar ejecta were also formed in a short-duration eruption. Our observations strengthen the link between these post-AGB objects and red novae and support the hypothesis that some of the post-AGB objects were formed in a common-envelope ejection event or its most catastrophic outcome, a merger.Comment: 19 pages, 13 figures, accepted to A&

    Towards new background independent representations for Loop Quantum Gravity

    Full text link
    Recently, uniqueness theorems were constructed for the representation used in Loop Quantum Gravity. We explore the existence of alternate representations by weakening the assumptions of the so called LOST uniqueness theorem. The weakened assumptions seem physically reasonable and retain the key requirement of explicit background independence. For simplicity, we restrict attention to the case of gauge group U(1).Comment: 22 pages, minor change
    corecore