152 research outputs found
Mate-guarding behavior enhances male reproductive success via familiarization with mating partners in medaka fish
[Background] Male-male competition and female mating preference are major mechanisms of sexual selection, which influences individual fitness. How male-male competition affects female preference, however, remains poorly understood. Under laboratory conditions, medaka (Oryzias latipes) males compete to position themselves between a rival male and the female (mate-guarding) in triadic relationships (male, male, and female). In addition, females prefer to mate with visually familiar males. In the present study, to examine whether mate-guarding affects female preference via visual familiarization, we established a novel behavioral test to simultaneously quantify visual familiarization of focal males with females and mate-guarding against rival males. In addition, we investigated the effect of familiarization on male reproductive success in triadic relationships. [Results] Three fish (female, male, male) were placed separately in a transparent three-chamber tank, which allowed the male in the center (near male) to maintain closer proximity to the female than the other male (far male). Placement of the wild-type male in the center blocked visual familiarization of the far male by the female via mate-guarding. In contrast, placement of an arginine-vasotocin receptor mutant male, which exhibits mate-guarding deficits, in the center, allowing for maintaining close proximity to the female, did not block familiarization of the far male by the female. We also demonstrated that the reproductive success of males was significantly decreased by depriving females visual familiarization with the males. [Conclusions] Our findings indicated that, at least in triadic relationships, dominance in mate-guarding, not simply close proximity, allows males to gain familiarity with the female over their rivals, which may enhance female preference for the dominant male. These findings focusing on the triadic relationships of medaka may contribute to our understanding of the adaptive significance of persistent mate-guarding, as well as female preference for familiar mates
Mate-guarding behavior enhances male reproductive success via familiarization with mating partners in medaka fish
Background: Male-male competition and female mating preference are major mechanisms of sexual selection, which influences individual fitness. How male-male competition affects female preference, however, remains poorly understood. Under laboratory conditions, medaka (Oryzias latipes) males compete to position themselves between a rival male and the female (mate-guarding) in triadic relationships (male, male, and female). In addition, females prefer to mate with visually familiar males. In the present study, to examine whether mate-guarding affects female preference via visual familiarization, we established a novel behavioral test to simultaneously quantify visual familiarization of focal males with females and mate-guarding against rival males. In addition, we investigated the effect of familiarization on male reproductive success in triadic relationships. Results: Three fish (female, male, male) were placed separately in a transparent three-chamber tank, which allowed the male in the center (near male) to maintain closer proximity to the female than the other male (far male). Placement of the wild-type male in the center blocked visual familiarization of the far male by the female via mate-guarding. In contrast, placement of an arginine-vasotocin receptor mutant male, which exhibits mate-guarding deficits, in the center, allowing for maintaining close proximity to the female, did not block familiarization of the far male by the female. We also demonstrated that the reproductive success of males was significantly decreased by depriving females visual familiarization with the males. Conclusions: Our findings indicated that, at least in triadic relationships, dominance in mate-guarding, not simply close proximity, allows males to gain familiarity with the female over their rivals, which may enhance female preference for the dominant male. These findings focusing on the triadic relationships of medaka may contribute to our understanding of the adaptive significance of persistent mate-guarding, as well as female preference for familiar mates
Lattice-patterned collagen fibers and their dynamics in axolotl skin regeneration
The morphology of collagen-producing cells and the structure of produced collagen in the dermis have not been well-described. This lack of insights has been a serious obstacle in the evaluation of skin regeneration. We succeeded in visualizing collagen-producing cells and produced collagen using the axolotl skin, which is highly transparent. The visualized dermal collagen had a lattice-like structure. The collagen-producing fibroblasts consistently possessed the lattice-patterned filopodia along with the lattice-patterned collagen network. The dynamics of this lattice-like structure were also verified in the skin regeneration process of axolotls, and it was found that the correct lattice-like structure was not reorganized after simple skin wounding but was reorganized in the presence of nerves. These findings are not only fundamental insights in dermatology but also valuable insights into the mechanism of skin regeneration
High-resolution melting curve analysis for rapid detection of mutations in a Medaka TILLING library
<p>Abstract</p> <p>Background</p> <p>During the last two decades, DNA sequencing has led to the identification of numerous genes in key species; however, in most cases, their functions are still unknown. In this situation, reverse genetics is the most suitable method to assign function to a gene. TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse-genetic strategy that combines random chemical mutagenesis with high-throughput discovery of the induced mutations in target genes. The method has been applied to a variety of plant and animal species. Screening of the induced mutations is the most important step in TILLING. Currently, direct sequencing or nuclease-mediated screening of heteroduplexes is widely used for detection of mutations in TILLING. Both methods are useful, but the costs are substantial and turnaround times are relatively long. Thus, there is a need for an alternative method that is of higher throughput and more cost effective.</p> <p>Results</p> <p>In this study, we developed a high resolution melting (HRM) assay and evaluated its effectiveness for screening ENU-induced mutations in a medaka TILLING library. We had previously screened mutations in the <it>p53 </it>gene by direct sequencing. Therefore, we first tested the efficiency of the HRM assay by screening mutations in <it>p53</it>, which indicated that the HRM assay is as useful as direct sequencing. Next, we screened mutations in the <it>atr </it>and <it>atm </it>genes with the HRM assay. Nonsense mutations were identified in each gene, and the phenotypes of these nonsense mutants confirmed their loss-of-function nature.</p> <p>Conclusions</p> <p>These results demonstrate that the HRM assay is useful for screening mutations in TILLING. Furthermore, the phenotype of the obtained mutants indicates that medaka is an excellent animal model for investigating genome stability and gene function, especially when combined with TILLING.</p
CRISPR-Cas9システムを用いた味覚受容体発現調節物質のスクリーニング系の開発
Taste recognition mediated by taste receptors is critical for the survival of animals in nature and is an important determinant of nutritional status and quality of life in humans. However, many factors including aging, diabetes, zinc deficiency, infection with influenza or cold viruses, and chemotherapy can trigger dysgeusia, for which a standard treatment has not been established. We here established an engineered strain of medaka (Oryzias latipes) that expresses green fluorescent protein (GFP) from the endogenous taste 1 receptor 3 (T1R3) gene locus with the use of the CRISPR-Cas9 system. This T1R3-GFP knock-in (KI) strain allows direct visualization of expression from this locus by monitoring of GFP fluorescence. The pattern of GFP expression in the T1R3-GFP KI fish thus mimicked that of endogenous T1R3 gene expression. Furthermore, exposure of T1R3-GFP KI medaka to water containing monosodium glutamate or the anticancer agent 5-fluorouracil resulted in an increase or decrease, respectively, in GFP fluorescence intensity, effects that also recapitulated those on T1R3 mRNA abundance. Finally, screening for agents that affect GFP fluorescence intensity in T1R3-GFP KI medaka identified tryptophan as an amino acid that increases T1R3 gene expression. The establishment of this screening system for taste receptor expression in medaka provides a new tool for the development of potential therapeutic agents for dysgeusia
ATF6α/β-mediated adjustment of ER chaperone levels is essential for development of the notochord in medaka fish.
ATF6α and ATF6β are membrane-bound transcription factors activated by regulated intramembrane proteolysis in response to endoplasmic reticulum (ER) stress to induce various ER quality control proteins. ATF6α- and ATF6β single-knockout mice develop normally, but ATF6α/β double knockout causes embryonic lethality, the reason for which is unknown. Here we show in medaka fish that ATF6α is primarily responsible for transcriptional induction of the major ER chaperone BiP and that ATF6α/β double knockout, but not ATF6α- or ATF6β single knockout, causes embryonic lethality, as in mice. Analyses of ER stress reporters reveal that ER stress occurs physiologically during medaka early embryonic development, particularly in the brain, otic vesicle, and notochord, resulting in ATF6α- and ATF6β-mediated induction of BiP, and that knockdown of the α1 chain of type VIII collagen reduces such ER stress. The absence of transcriptional induction of several ER chaperones in ATF6α/β double knockout causes more profound ER stress and impaired notochord development, which is partially rescued by overexpression of BiP. Thus ATF6α/β-mediated adjustment of chaperone levels to increased demands in the ER is essential for development of the notochord, which synthesizes and secretes large amounts of extracellular matrix proteins to serve as the body axis before formation of the vertebra
Targeted single-cell gene induction by optimizing the dually regulated CRE/loxP system by a newly defined heat-shock promoter and the steroid hormone in Arabidopsis thaliana
Multicellular organisms rely on intercellular communication systems to organize their cellular functions. In studies focusing on intercellular communication, the key experimental techniques include the generation of chimeric tissue using transgenic DNA recombination systems represented by the CRE/loxP system. If an experimental system enables the induction of chimeras at highly targeted cell(s), it will facilitate the reproducibility and precision of experiments. However, multiple technical limitations have made this challenging. The stochastic nature of DNA recombination events, especially, hampers reproducible generation of intended chimeric patterns. Infrared laser-evoked gene operator (IR-LEGO), a microscopic system that irradiates targeted cells using an IR laser, can induce heat shock-mediated expression of transgenes, for example, CRE recombinase gene, in the cells. In this study, we developed a method that induces CRE/loxP recombination in the target cell(s) of plant roots and leaves in a highly specific manner. We combined IR-LEGO, an improved heat-shock-specific promoter, and dexamethasone-dependent regulation of CRE. The optimal IR-laser power and irradiation duration were estimated via exhaustive irradiation trials and subsequent statistical modeling. Under optimized conditions, CRE/loxP recombination was efficiently induced without cellular damage. We also found that the induction efficiency varied among tissue types and cellular sizes. The developed method offers an experimental system to generate a precisely designed chimeric tissue, and thus, will be useful for analyzing intercellular communication at high resolution in roots and leaves
Generation of medaka gene knockout models by target-selected mutagenesis
We have established a reverse genetics approach for the routine generation of medaka (Oryzias latipes) gene knockouts. A cryopreserved library of N-ethyl-N-nitrosourea (ENU) mutagenized fish was screened by high-throughput resequencing for induced point mutations. Nonsense and splice site mutations were retrieved for the Blm, Sirt1, Parkin and p53 genes and functional characterization of p53 mutants indicated a complete knockout of p53 function. The current cryopreserved resource is expected to contain knockouts for most medaka genes
Plasma angiotensin-converting enzyme 2 (ACE2) is a marker for renal outcome of diabetic kidney disease (DKD) (U-CARE study 3)
Introduction ACE cleaves angiotensin I (Ang I) to angiotensin II (Ang II) inducing vasoconstriction via Ang II type 1 (AT1) receptor, while ACE2 cleaves Ang II to Ang (1-7) causing vasodilatation by acting on the Mas receptor. In diabetic kidney disease (DKD), it is still unclear whether plasma or urine ACE2 levels predict renal outcomes or not.
Research design and methods Among 777 participants with diabetes enrolled in the Urinary biomarker for Continuous And Rapid progression of diabetic nEphropathy study, the 296 patients followed up for 9 years were investigated. Plasma and urinary ACE2 levels were measured by the ELISA. The primary end point was a composite of a decrease of estimated glomerular filtration rate (eGFR) by at least 30% from baseline or initiation of hemodialysis or peritoneal dialysis. The secondary end points were a 30% increase or a 30% decrease in albumin-to-creatinine ratio from baseline to 1 year.
Results The cumulative incidence of the renal composite outcome was significantly higher in group 1 with lowest tertile of plasma ACE2 (p=0.040). Group 2 with middle and highest tertile was associated with better renal outcomes in the crude Cox regression model adjusted by age and sex (HR 0.56, 95% CI 0.31 to 0.99, p=0.047). Plasma ACE2 levels demonstrated a significant association with 30% decrease in ACR (OR 1.46, 95% CI 1.044 to 2.035, p=0.027) after adjusting for age, sex, systolic blood pressure, hemoglobin A1c, and eGFR.
Conclusions Higher baseline plasma ACE2 levels in DKD were protective for development and progression of albuminuria and associated with fewer renal end points, suggesting plasma ACE2 may be used as a prognosis marker of DKD.Trial registration number UMIN000011525
- …