22 research outputs found

    FLUCTUATING PATTERNS OF ARCHTECTURE FACADE AND THEIR AUTOMATIC CREATION

    No full text

    Personalized Web Page Recommendation Based on Preference Footprint to Browsed Pages

    No full text

    A case of bloodstream co-infection of Saccharomyces cerevisiae and Candida glabrata while using micafungin

    No full text
    Abstract Background Saccharomyces cerevisiae is ubiquitous in the gastrointestinal tract and known as brewer's or baker's yeast. We experienced a case of S. cerevisiae and Candida glabrata co-infectious bloodstream infection. It is rare to detect both S. cerevisiae and Candida species in blood cultures together. Case We treated a 73-year-old man who developed a pancreaticoduodenal fistula infection after pancreaticoduodenectomy. The patient had a fever on postoperative day 59. We took blood cultures and detected C. glabrata. Thus, we started micafungin. On postoperative day 62, we retested blood cultures, and detected S cerevisiae and C. glabrata. We changed micafungin to liposomal amphotericin B. Blood cultures became negative on postoperative day 68. We changed liposomal amphotericin B to fosfluconazole and micafungin because of hypokalemia. He got well, and we terminated antifungal drugs 18 days after the blood cultures became negative. Conclusion Co-infection with S. cerevisiae and Candida species is rare. In addition, in this case, S. cerevisiae developed from blood cultures during micafungin administration. Thus, micafungin may not be effective enough to treat S. cerevisiae fungemia, although echinocandin is considered one of the alternative therapy for Saccharomyces infections

    Association of Inflammation, Ectopic Bone Formation, and Sacroiliac Joint Variation in Ossification of the Posterior Longitudinal Ligament

    No full text
    Ossification of the posterior longitudinal ligament (OPLL) is considered a multifactorial condition characterized by ectopic new bone formation in the spinal ligament. Recently, its connections with inflammation as well as sacroiliac (SI) joint ankylosis have been discussed. Nevertheless, whether inflammation, spinal ligament ossification, and SI joint changes are linked in OPLL has never been investigated. In this study, whole-spinal computed tomography and serum high-sensitive C-reactive protein (hs-CRP) levels were obtained in 162 patients with cervical OPLL. Ossification lesions were categorized as plateau and hill shapes. Accordingly, patients were divided into plateau-shaped (51 males and 33 females; mean age: 67.7 years) and hill-shaped (50 males and 28 females; mean age: 67.2 years) groups. SI joint changes were classified into four types and three subtypes, as previously described. Interactions among ossification shapes, hs-CRP levels, and morphological changes in the SI joint were investigated. The plateau shape was more common in the vertebral segments (59.5%), compared to the hill shape, which was predominant in the intervertebral regions (65.4%). Serum hs-CRP levels in the plateau-shaped group (0.11 ± 0.10 mg/dL) were significantly higher than those in the hill-shaped group (0.07 ± 0.08 mg/dL). SI joint intra-articular fusion was the main finding in the plateau-shaped group and showed significantly higher hs-CRP levels compared to the anterior para-articular bridging, which more frequently occurred in the hill-shaped group. Our findings suggested a possible inflammation mechanism that might contribute to the new bone formation in OPLL, particularly the plateau shape

    Hydrogenotrophic Denitrification of Groundwater Using a Simplified Reactor for Drinking Water: A Case Study in the Kathmandu Valley, Nepal

    No full text
    High nitrate-nitrogen (NO3−–N) content is a typical feature of groundwater, which is the primary water source in the Kathmandu Valley, Nepal. Considering the Kathmandu Valley’s current problem of water scarcity, a user-friendly system for removing NO3−–N from groundwater is promptly desired. In this study, a simplified hydrogenotrophic denitrification (HD) reactor was developed for the Kathmandu Valley, and its effectiveness was evaluated by its ability to treat raw groundwater. The reactor operated for 157 days and showed stability and robustness. It had an average nitrogen removal efficiency of 80.9 ± 16.1%, and its nitrogen loading rate and nitrogen removal rate varied from 23.8 to 92.3 g–N/(m3∙d) and from 18.3 to 73.7 g–N/(m3∙d), respectively. Compared to previous HD reactors, this simplified HD reactor is a more user-friendly option for the Kathmandu Valley, as most of the materials used for the reactor were locally available and require less maintenance. The reactor is recommended for groundwater treatment at the household level. It has a current treatment capacity of 40 L/d, which can fulfill the daily requirements for drinking and cooking water in a household with 4–5 people
    corecore