104 research outputs found

    Biodiversity and structure of spider communities along a metal pollution gradient

    Get PDF
    The objective of the study was to determine whether long-term metal pollution affects communities of epigeal spiders (Aranea), studied at three taxonomic levels: species, genera, and families. Biodiversity was defined by three indices: the Hierarchical Richness Index (HRI), Margalef index (DM) and Pielou evenness index (J). In different ways the indices describe taxa richness and the distribution of individuals among taxa. The dominance pattern of the communities was described with four measures: number of dominant species at a site, percentage of dominant species at a site, average dominant species abundance at a site, and the share of the most numerous species (Alopecosa cuneata) at a site. Spiders were collected along a metal pollution gradient in southern Poland, extending ca. 33 km from zinc and lead smelter to an uncontaminated area. The zinc concentration in soil was used as the pollution index.The study revealed a significant effect of metal pollution on spider biodiversity as described by HRI for species (p = 0.039), genera (p = 0.0041) and families (p = 0.0147), and by DM for genera (p = 0.0259) and families (p = 0.0028). HRI correlated negatively with pollution level, while DM correlated positively. This means that although broadly described HRI diversity decreased with increasing pollution level, species richness increased with increasing contamination. Mesophilic meadows were generally richer. Pielou (J) did not show any significant correlations. There were a few evidences for the intermediate disturbance hypothesis: certain indices reached their highest values at moderate pollution levels rather than at the cleanest or most polluted sites

    Species trait shifts in vegetation and soil seed bank during fen degradation

    Get PDF
    Fens in Central Europe are characterised by waterlogged organic substrate and low productivity. Human-induced changes due to drainage and mowing lead to changes in plant species composition from natural fen communities to fen meadows and later to over-drained, degraded meadows. Moderate drainage leads to increased vegetation productivity, and severe drainage results in frequent soil disturbances and less plant growth. In the present article, we analyse changes in plant trait combinations in the vegetation and the soil seed bank as well as changes in the seed bank types along gradient of drainage intensity. We hypothesize that an increase in productivity enhances traits related to persistence and that frequent disturbance selects for regeneration traits. We use multivariate statistics to analyse data from three disturbance levels: undisturbed fen, slightly drained fen meadow and severely drained degraded meadow. We found that the abundance of plants regenerating from seeds and accumulating persistent seed banks was increasing with degradation level, while plants reproducing vegetatively were gradually eliminated along the same trajectory. Plants with strong resprouting abilities increased during degradation. We also found that shifts in trait combinations were similar in the aboveground vegetation and in soil seed banks. We found that the density of short-term persistent seeds in the soil is highest in fen meadows and the density of long-term persistent seeds is highest in degraded meadows. The increase in abundance of species with strong regeneration traits at the cost of species with persistence-related traits has negative consequences for the restoration prospects of severely degraded sites
    corecore