6,909 research outputs found

    Spinon-Holon binding in tJt-J model

    Full text link
    Using a phenomenological model, we discuss the consequences of spinon-holon binding in the U(1) slave-boson approach to tJt-J model. Within a small xx (x=x= hole concentration) expansion, we show that spinon-holon binding produces a pseudo-gap normal state with a segmented Fermi surface and the superconducting state is formed by opening an "additional" d-wave gap on the segmented Fermi surface. The d-wave gap merge with the pseudo-gap smoothly as temperature T0T\to0. The quasi-particles in the superconducting state are coupled to external electromagnetic field with a coupling constant of order xγx^{\gamma} where 0γ1/20\leq\gamma\leq1/2, depending on the strength of the effective spinon-holon binding potential.Comment: 9 pages, 3 figure

    Nearly Degenerate Gauginos and Dark Matter at the LHC

    Full text link
    Motivated by dark-matter considerations in supersymmetric theories, we investigate in a fairly model-independent way the detection at the LHC of nearly degenerate gauginos with mass differences between a few GeV and about 30 GeV. Due to the degeneracy of gaugino states, the conventional leptonic signals are likely lost. We first consider the leading signal from gluino production and decay. We find that it is quite conceivable to reach a large statistical significance for the multi-jet plus missing energy signal with an integrated luminosity about 50 pb^-1 (50 fb^-1) for a gluino mass of 500 GeV (1 TeV). If gluinos are not too heavy, less than about 1.5 TeV, this channel can typically probe gaugino masses up to about 100 GeV below the gluino mass. We then study the Drell-Yan type of gaugino pair production in association with a hard QCD jet, for gaugino masses in the range of 100-150 GeV. The signal observation may be statistically feasible with about 10 fb^-1, but systematically challenging due to the lack of distinctive features for the signal distributions. By exploiting gaugino pair production through weak boson fusion, signals of large missing energy plus two forward-backward jets may be observable at a 4-6\sigma level above the large SM backgrounds with an integrated luminosity of 100-300 fb^-1. Finally, we point out that searching for additional isolated soft muons in the range p_T ~3-10 GeV in the data samples discussed above may help to enrich the signal and to control the systematics. Significant efforts are made to explore the connection between the signal kinematics and the relevant masses for the gluino and gauginos, to probe the mass scales of the superpartners, in particular the LSP dark matter.Comment: 35 pages, 32 figure

    Reversal-Field Memory in the Hysteresis of Spin Glasses

    Full text link
    We report a novel singularity in the hysteresis of spin glasses, the reversal-field memory effect, which creates a non-analyticity in the magnetization curves at a particular point related to the history of the sample. The origin of the effect is due to the existence of a macroscopic number of "symmetric clusters" of spins associated with a local spin-reversal symmetry of the Hamiltonian. We use First Order Reversal Curve (FORC) diagrams to characterize the effect and compare to experimental results on thin magnetic films. We contrast our results on spin glasses to random magnets and show that the FORC technique is an effective "magnetic fingerprinting" tool.Comment: 4 pages, 6 figure

    Reversal-field memory in magnetic hysteresis

    Full text link
    We report results demonstrating a singularity in the hysteresis of magnetic materials, the reversal-field memory effect. This effect creates a nonanalyticity in the magnetization curves at a particular point related to the history of the sample. The microscopic origin of the effect is associated with a local spin-reversal symmetry of the underlying Hamiltonian. We show that the presence or absence of reversal-field memory distinguishes two widely studied models of spin glasses (random magnets).Comment: 3 pages, 5 figures. Proceedings of "2002 MMM Conferece", Tampa, F

    On the realization of Symmetries in Quantum Mechanics

    Full text link
    The aim of this paper is to give a simple, geometric proof of Wigner's theorem on the realization of symmetries in quantum mechanics that clarifies its relation to projective geometry. Although several proofs exist already, it seems that the relevance of Wigner's theorem is not fully appreciated in general. It is Wigner's theorem which allows the use of linear realizations of symmetries and therefore guarantees that, in the end, quantum theory stays a linear theory. In the present paper, we take a strictly geometrical point of view in order to prove this theorem. It becomes apparent that Wigner's theorem is nothing else but a corollary of the fundamental theorem of projective geometry. In this sense, the proof presented here is simple, transparent and therefore accessible even to elementary treatments in quantum mechanics.Comment: 8 page

    Fermi-edge problem in the presence of AC electric field

    Full text link
    We study in this paper a non-equilibrium Fermi-edge problem where the system under investigation is a single electron reservoir putting under an AC electric field. We show that the electron Green's function and other correlation functions in the problem can be solved and expressed exactly in terms of a well-defined integral. The qualitative behaviors of the solution is studied and compared with the situation where the impurity is coupled to more than one reservoirs at different chemical potentials.Comment: Published versio

    No Second Chance to Make a First Impression: The “Thin‐Slice” Effect on Instructor Ratings and Learning Outcomes in Higher Education

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134071/1/jedm12116_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134071/2/jedm12116.pd

    Excitations in one-dimensional S=1/2 quantum antiferromagnets

    Full text link
    The transition from dimerized to uniform phases is studied in terms of spectral weights for spin chains using continuous unitary transformations (CUTs). The spectral weights in the S=1 channel are computed perturbatively around the limit of strong dimerization. We find that the spectral weight is concentrated mainly in the subspaces with a small number of elementary triplets (triplons), even for vanishing dimerization. So, besides spinons, triplons may be used as elementary excitations in spin chains. We conclude that there is no necessity to use fractional excitations in low-dimensional, undoped or doped quantum antiferromagnets.Comment: 4 pages, 1 figure include

    Low energy physical properties of high-Tc superconducting Cu oxides: A comparison between the resonating valence bond and experiments

    Full text link
    In a recent review by Anderson and coworkers\cite{Vanilla}, it was pointed out that an early resonating valence bond (RVB) theory is able to explain a number of unusual properties of high temperature superconducting (SC) Cu-oxides. Here we extend previous calculations \cite{anderson87,FC Zhang,Randeria} to study more systematically low energy physical properties of the plain vanilla d-wave RVB state, and to compare results with the available experiments. We use a renormalized mean field theory combined with variational Monte Carlo and power Lanczos methods to study the RVB state of an extended tJt-J model in a square lattice with parameters suitable for the hole doped Cu-oxides. The physical observable quantities we study include the specific heat, the linear residual thermal conductivity, the in-plane magnetic penetration depth, the quasiparticle energy at the antinode (π,0)(\pi, 0), the superconducting energy gap, the quasiparticle spectra and the Drude weight. The traits of nodes (including kFk_{F}, the Fermi velocity vFv_{F} and the velocity along Fermi surface v2v_{2}), as well as the SC order parameter are also studied. Comparisons of the theory and the experiments in cuprates show an overall qualitative agreement, especially on their doping dependences.Comment: 12 pages, 14 figures, 1 tabl

    Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    Get PDF
    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC) are an interesting option for photon-photon physics up to about 100 GeV photon-photon CM energy.Comment: REVTeX, 13 pages, 10 figures (uuencoded,compressed postscript
    corecore