59 research outputs found

    Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile

    Get PDF
    Quartz stones are ubiquitous in deserts and are a substrate for hypoliths, microbial colonists of the underside of such stones. These hypoliths thrive where extreme temperature and moisture stress limit the occurrence of higher plant and animal life. Several studies have reported the occurrence of green hypolithic colonization dominated by cyanobacteria. Here, we describe a novel red hypolithic colonization from Yungay, at the hyper-arid core of the Atacama Desert in Chile. Comparative analysis of green and red hypoliths from this site revealed markedly different microbial community structure as revealed by 16S rRNA gene clone libraries. Green hypoliths were dominated by cyanobacteria (Chroococcidiopsis and Nostocales phylotypes), whilst the red hypolith was dominated by a taxonomically diverse group of chloroflexi. Heterotrophic phylotypes common to all hypoliths were affiliated largely to desiccation-tolerant taxa within the Actinobacteria and Deinococci. Alphaproteobacterial phylotypes that affiliated with nitrogen-fixing taxa were unique to green hypoliths, whilst Gemmatimonadetes phylotypes occurred only on red hypolithon. Other heterotrophic phyla recovered with very low frequency were assumed to represent functionally relatively unimportant taxa. © 2010 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert

    Get PDF
    The Namib Dessert is considered the oldest desert in the world and hyperarid for the last 5 million years. However, the environmental buffering provided by quartz and other translucent rocks supports extensive hypolithic microbial communities. In this study, open soil and hypolithic microbial communities have been investigated along an East–West transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that structurally different microbial communities occur in soil and in hypolithic zones. Using variation partitioning, we found that hypolithic communities exhibited a fog-related distribution as indicated by the significant East– West clustering. Sodium content was also an important environmental factor affecting the composition of both soil and hypolithic microbial communities. Finally, although null models for patterns in microbial communities were not supported by experimental data, the amount of unexplained variation (68–97 %) suggests that stochastic processes also play a role in the assembly of such communities in the Namib Desert.Web of Scienc

    Ancient origins determine global biogeography of hot and cold desert cyanobacteria

    Get PDF
    Factors governing large-scale spatio-temporal distribution of microorganisms remain unresolved, yet are pivotal to understanding ecosystem value and function. Molecular genetic analyses have focused on the influence of niche and neutral processes in determining spatial patterns without considering the temporal scale. Here, we use temporal phylogenetic analysis calibrated using microfossil data for a globally sampled desert cyanobacterium, Chroococcidiopsis, to investigate spatio-temporal patterns in microbial biogeography and evolution. Multilocus phylogenetic associations were dependent on contemporary climate with no evidence for distance-related patterns. Massively parallel pyrosequencing of environmental samples confirmed that Chroococcidiopsis variants were specific to either hot or cold deserts. Temporally scaled phylogenetic analyses showed no evidence of recent inter-regional gene flow, indicating populations have not shared common ancestry since before the formation of modern continents. These results indicate that global distribution of desert cyanobacteria has not resulted from widespread contemporary dispersal but is an ancient evolutionary legacy. This highlights the importance of considering temporal scales in microbial biogeography

    Hypolithic

    No full text

    Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley

    Get PDF
    The Miers Valley within the McMurdo Dry Valleys of Antarctica supports abundant quartz and marble substrates for hypolithons—microbial colonists on the underside of these translucent rocks. Three physically distinct hypolithic community types have been identified: cyanobacteria dominated (Type I), fungus dominated (Type II) or moss dominated (Type III). The distribution of the three types was mapped across much of the ~75 km2 area of the upper Miers Valley and correlated this with the measurements of selected micro-environmental variables. Type I hypolithons were most common and occurred at all altitudes up to 824 m, whilst Type II and Type III hypolithons were less abundant and restricted to lower altitudes on the valley floor (<415 m and <257 m, respectively). Whilst all colonized quartz effectively filtered incident UVB irradiance, transmittance levels for UVA and PAR varied markedly and were significant in determining hypolith type. Notably, the Type I hypolithons occurred under rocks with a significantly lower transmittance of photosynthetically active radiation than Type II and III hypolithons. Altitude and aspect were also significant factors determining hypolith type, and a role for altitude-related abiotic variables in determining the distribution of Type I, II and III hypolithons is proposed.Don A. Cowan, Stephen B. Pointing, Mark I. Stevens, S. Craig Cary, Francesca Stomeo and I. Marla Tuffi

    Subsurface microbial habitats in an extreme desert Mars-analog environment

    No full text
    10.3389/fmicb.2019.00069Frontiers in Microbiology10FEB6

    Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale

    No full text
    Extreme arid regions in the worlds' major deserts are typified by quartz pavement terrain. Cryptic hypolithic communities colonize the ventral surface of quartz rocks and this habitat is characterized by a relative lack of environmental and trophic complexity. Combined with readily identifiable major environmental stressors this provides a tractable model system for determining the relative role of stochastic and deterministic drivers in community assembly. Through analyzing an original, worldwide data set of 16S rRNA-gene defined bacterial communities from the most extreme deserts on the Earth, we show that functional assemblages within the communities were subject to different assembly influences. Null models applied to the photosynthetic assemblage revealed that stochastic processes exerted most effect on the assemblage, although the level of community dissimilarity varied between continents in a manner not always consistent with neutral models. The heterotrophic assemblages displayed signatures of niche processes across four continents, whereas in other cases they conformed to neutral predictions. Importantly, for continents where neutrality was either rejected or accepted, assembly drivers differed between the two functional groups. This study demonstrates that multi-trophic microbial systems may not be fully described by a single set of niche or neutral assembly rules and that stochasticity is likely a major determinant of such systems, with significant variation in the influence of these determinants on a global scale. © 2011 International Society for Microbial Ecology All rights reserved.link_to_OA_fulltex
    corecore