22 research outputs found

    Anatomical Differences Determine Distribution of Adenovirus after Convection-Enhanced Delivery to the Rat Brain

    Get PDF
    Background: Convection-enhanced delivery (CED) of adenoviruses offers the potential of widespread virus distribution in the brain. In CED, the volume of distribution (Vd) should be related to the volume of infusion (Vi) and not to dose, but when using adenoviruses contrasting results have been reported. As the characteristics of the infused tissue can affect convective delivery, this study was performed to determine the effects of the gray and white matter on CED of adenoviruses and similar sized super paramagnetic iron oxide nanoparticles (SPIO). Methodology/Principal Findings: We convected AdGFP, an adenovirus vector expressing Green Fluorescent Protein, a virus sized SPIO or trypan blue in the gray and white matter of the striatum and external capsule of Wistar rats and towards orthotopic infiltrative brain tumors. The resulting Vds were compared to Vi and transgene expression to SPIO distribution. Results show that in the striatum Vd is not determined by the Vi but by the infused virus dose, suggesting diffusion, active transport or receptor saturation rather than convection. Distribution of virus and SPIO in the white matter is partly volume dependent, which is probably caused by preferential fluid pathways from the external capsule to the surrounding gray matter, as demonstrated by co-infusing trypan blue. Distant tumors were reached using the white matter tracts but tumor penetration was limited. Conclusions/Significance: CED of adenoviruses in the rat brain and towards infiltrative tumors is feasible when regional anatomical differences are taken into account while SPIO infusion could be considered to validate proper catheter positioning and predict adenoviral distribution

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    Clinical Significance of Methicillin-Resistant Staphylococcus aureus Colonization on Hospital Admission: One-Year Infection Risk

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization among inpatients is a well-established risk factor for MRSA infection during the same hospitalization, but the long-term risk of MRSA infection is uncertain. We performed a retrospective cohort study to determine the one-year risk of MRSA infection among inpatients with MRSA-positive nasal polymerase chain reaction (PCR) tests confirmed by positive nasal culture (Group 1), patients with positive nasal PCR but negative nasal culture (Group 2), and patients with negative nasal PCR (Group 3). METHODOLOGY/PRINCIPAL FINDINGS: Subjects were adults admitted to a four-hospital system between November 1, 2006 and March 31, 2011, comprising 195,255 admissions. Patients underwent nasal swab for MRSA PCR upon admission; if positive, nasal culture for MRSA was performed; if recovered, MRSA was tested for Panton-Valentine Leukocidin (PVL). Outcomes included MRSA-positive clinical culture and skin and soft tissue infection (SSTI). Group 1 patients had a one-year risk of MRSA-positive clinical culture of 8.0% compared with 3.0% for Group 2 patients, and 0.6% for Group 3 patients (p<0.001). In a multivariable model, the hazard ratios for future MRSA-positive clinical culture were 6.52 (95% CI, 5.57 to 7.64) for Group 1 and 3.40 (95% CI, 2.70 to 4.27) for Group 2, compared with Group 3 (p<0.0001). History of MRSA and concurrent MRSA-positive clinical culture were significant risk factors for future MRSA-positive clinical culture. Group 1 patients colonized with PVL-positive MRSA had a one-year risk of MRSA-positive clinical culture of 10.1%, and a one-year risk of MRSA-positive clinical culture or SSTI diagnosis of 21.7%, compared with risks of 7.1% and 12.5%, respectively, for patients colonized with PVL-negative MRSA (p = 0.04, p = 0.005, respectively). CONCLUSIONS/SIGNIFICANCE: MRSA nasal colonization is a significant risk factor for future MRSA infection; more so if detected by culture than PCR. Colonization with PVL-positive MRSA is associated with greater risk than PVL-negative MRSA

    Identification of microsporidia host-exposed proteins reveals a repertoire of rapidly evolving proteins

    No full text
    Pathogens use a variety of secreted and surface proteins to interact with and manipulate their hosts, but a systematic approach for identifying such proteins has been lacking. To identify these host-exposed proteins, we used spatially restricted enzymatic tagging followed by mass spectrometry analysis of Caenorhabditis elegans infected with two species of Nematocida microsporidia. We identified 82 microsporidia proteins inside of intestinal cells, including several pathogen proteins in the nucleus. These microsporidia proteins are enriched in targeting signals, are rapidly evolving and belong to large Nematocida-specific gene families. We also find that large, species-specific families are common throughout microsporidia species. Our data suggest that the use of a large number of rapidly evolving species-specific proteins represents a common strategy for microsporidia to interact with their hosts. The unbiased method described here for identifying potential pathogen effectors represents a powerful approach to study a broad range of pathogens
    corecore