56 research outputs found

    Discontinuation of thyroid hormone treatment among children in the United States with congenital hypothyroidism: findings from health insurance claims data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thyroid hormone treatment in children with congenital hypothyroidism can prevent intellectual disability. Guidelines recommend that children diagnosed with congenital hypothyroidism through newborn screening remain on treatment to at least 3 years of age, after which a trial off therapy can determine which children have transient hypothyroidism. The purpose of this study was to describe the rate at which children with congenital hypothyroidism in the United States discontinue thyroid hormone treatment in early childhood.</p> <p>Methods</p> <p>Retrospective analysis of the 2002-2006 MarketScan<sup>® </sup>Commercial Claims and Encounters research databases and the 2001-2005 MarketScan Multi-State Medicaid databases. Children were classified as having congenital hypothyroidism based on billing codes and having filled a prescription for thyroid hormone treatment. Kaplan-Meier curve analysis was used to determine discontinuation rates.</p> <p>Results</p> <p>There were a total of 412 Medicaid-enrolled children and 292 privately-insured children with presumed congenital hypothyroidism included in this study. The overall birth prevalence of congenital hypothyroidism across both datasets was about 1 per 2,300. By 36 months, the percentage who had discontinued thyroid replacement treatment was 38% (95% Confidence Interval: 32%-44%). Medicaid-enrolled children had a more rapid decline in the first 24 months of treatment compared to those with private insurance (<it>P </it>= 0.02).</p> <p>Conclusions</p> <p>More than one-third of children treated for congenital hypothyroidism discontinued treatment within 36 months, which is inconsistent with current guidelines. It is not known how many of these children required continued treatment or experience adverse effects from discontinuation. These findings emphasize the critical need for follow-up systems to monitor the outcome of newborn screening.</p

    Congenital hypothyroidism

    Get PDF
    Congenital hypothyroidism (CH) occurs in approximately 1:2,000 to 1:4,000 newborns. The clinical manifestations are often subtle or not present at birth. This likely is due to trans-placental passage of some maternal thyroid hormone, while many infants have some thyroid production of their own. Common symptoms include decreased activity and increased sleep, feeding difficulty, constipation, and prolonged jaundice. On examination, common signs include myxedematous facies, large fontanels, macroglossia, a distended abdomen with umbilical hernia, and hypotonia. CH is classified into permanent and transient forms, which in turn can be divided into primary, secondary, or peripheral etiologies. Thyroid dysgenesis accounts for 85% of permanent, primary CH, while inborn errors of thyroid hormone biosynthesis (dyshormonogeneses) account for 10-15% of cases. Secondary or central CH may occur with isolated TSH deficiency, but more commonly it is associated with congenital hypopitiutarism. Transient CH most commonly occurs in preterm infants born in areas of endemic iodine deficiency. In countries with newborn screening programs in place, infants with CH are diagnosed after detection by screening tests. The diagnosis should be confirmed by finding an elevated serum TSH and low T4 or free T4 level. Other diagnostic tests, such as thyroid radionuclide uptake and scan, thyroid sonography, or serum thyroglobulin determination may help pinpoint the underlying etiology, although treatment may be started without these tests. Levothyroxine is the treatment of choice; the recommended starting dose is 10 to 15 mcg/kg/day. The immediate goals of treatment are to rapidly raise the serum T4 above 130 nmol/L (10 ug/dL) and normalize serum TSH levels. Frequent laboratory monitoring in infancy is essential to ensure optimal neurocognitive outcome. Serum TSH and free T4 should be measured every 1-2 months in the first 6 months of life and every 3-4 months thereafter. In general, the prognosis of infants detected by screening and started on treatment early is excellent, with IQs similar to sibling or classmate controls. Studies show that a lower neurocognitive outcome may occur in those infants started at a later age (> 30 days of age), on lower l-thyroxine doses than currently recommended, and in those infants with more severe hypothyroidism

    Carrion Availability in Space and Time

    Get PDF
    Introduction Availability of carrion to scavengers is a central issue in carrion ecology and management, and is crucial for understanding the evolution of scavenging behaviour. Compared to live animals, their carcasses are relatively unpredictable in space and time in natural conditions, with a few exceptions (see below, especially Sect. “Carrion Exchange at the Terrestrial-Aquatic Interface”). Carrion is also an ephemeral food resource due to the action of a plethora of consumers, from microorganisms to large vertebrates, as well as to desiccation (i.e., loss of water content; DeVault et al. 2003; Beasley et al. 2012; Barton et al. 2013; Moleón et al. 2014). With a focus on vertebrate carcasses, here we give an overview of (a) the causes that produce carrion, (b) the rate of carrion production, (c) the factors affecting carrion quality, and (d) the distribution of carrion in space and time, both in terrestrial and aquatic environments (including their interface). In this chapter, we will focus on naturally produced carrion, whereas non-natural causes of animal mortality are described in chapter “Human-Mediated Carrion: Effects on Ecological Processes”. However, throughout this chapter we also refer to extensive livestock carrion, because in the absence of strong restrictions such as those imposed in the European Community after the bovine spongiform encephalopathy crisis (Donázar et al. 2009; Margalida et al. 2010), the spatiotemporal availability of carrion of extensive livestock and wild ungulates is similar

    The neurocognitive functioning in bipolar disorder: a systematic review of data

    Full text link
    corecore