3,162 research outputs found

    Determinants of adults' intention to vaccinate against pandemic swine flu

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.This article has been made available through the Brunel Open Access Publishing Fund.Background: Vaccination is one of the cornerstones of controlling an influenza pandemic. To optimise vaccination rates in the general population, ways of identifying determinants that influence decisions to have or not to have a vaccination need to be understood. Therefore, this study aimed to predict intention to have a swine influenza vaccination in an adult population in the UK. An extension of the Theory of Planned Behaviour provided the theoretical framework for the study. Methods: Three hundred and sixty two adults from the UK, who were not in vaccination priority groups, completed either an online (n = 306) or pen and paper (n = 56) questionnaire. Data were collected from 30th October 2009, just after swine flu vaccination became available in the UK, and concluded on 31st December 2009. The main outcome of interest was future swine flu vaccination intentions. Results: The extended Theory of Planned Behaviour predicted 60% of adults’ intention to have a swine flu vaccination with attitude, subjective norm, perceived control, anticipating feelings of regret (the impact of missing a vaccination opportunity), intention to have a seasonal vaccine this year, one perceived barrier: “I cannot be bothered to get a swine flu vaccination” and two perceived benefits: “vaccination decreases my chance of getting swine flu or its complications” and “if I get vaccinated for swine flu, I will decrease the frequency of having to consult my doctor,” being significant predictors of intention. Black British were less likely to intend to have a vaccination compared to Asian or White respondents. Conclusions: Theoretical frameworks which identify determinants that influence decisions to have a pandemic influenza vaccination are useful. The implications of this research are discussed with a view to maximising any future pandemic influenza vaccination uptake using theoretically-driven applications.This article is available through the Brunel Open Access Publishing Fund

    Assessing a candidate IIA dual to metastable supersymmetry-breaking

    Full text link
    We analyze the space of linearized non-supersymmetric deformations around a IIA solution found by Cvetic, Gibbons, Lu and Pope (CGLP) in hep-th/0101096. We impose boundary conditions aimed at singling out among those perturbations those describing the backreaction of anti-D2 branes on the CGLP background. The corresponding supergravity solution is a would-be dual to a metastable supersymmetry-breaking state. However, it turns out that this candidate bulk solution is inevitably riddled with IR divergences of its flux densities and action, whose physical meaning and implications for models of string cosmology call for further investigation.Comment: 33 pages. v2: reference added, clarifications in the introductio

    Application of the speed-duration relationship to normalize the intensity of high-intensity interval training

    Get PDF
    The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols

    Z-extremization and F-theorem in Chern-Simons matter theories

    Full text link
    The three dimensional exact R symmetry of N=2 SCFTs extremizes the partition function localized on a three sphere. Here we verify this statement at weak coupling. We give a detailed analysis for two classes of models. The first one is an SU(N)_k gauge theory at large k with both fundamental and adjoint matter fields, while the second is a flavored version of the ABJ theory, where the CS levels are large but they do not necessarily sum up to zero. We study in both cases superpotential deformations and compute the R charges at different fixed points. When these fixed points are connected by an RG flow we explicitly verify that the free energy decreases at the endpoints of the flow between the fixed points, corroborating the conjecture of an F-theorem in three dimensions.Comment: 28 pages, 3 figures, JHEP.cls, minor corrections, references adde

    The Constraints of Conformal Symmetry on RG Flows

    Full text link
    If the coupling constants in QFT are promoted to functions of space-time, the dependence of the path integral on these couplings is highly constrained by conformal symmetry. We begin the present note by showing that this idea leads to a new proof of Zamolodchikov's theorem. We then review how this simple observation also leads to a derivation of the a-theorem. We exemplify the general procedure in some interacting theories in four space-time dimensions. We concentrate on Banks-Zaks and weakly relevant flows, which can be controlled by ordinary and conformal perturbation theories, respectively. We compute explicitly the dependence of the path integral on the coupling constants and extract the change in the a-anomaly (this agrees with more conventional computations of the same quantity). We also discuss some general properties of the sum rule found in arXiv:1107.3987 and study it in several examples.Comment: 25 pages, 5 figure

    Comments on Holographic Entanglement Entropy and RG Flows

    Full text link
    Using holographic entanglement entropy for strip geometry, we construct a candidate for a c-function in arbitrary dimensions. For holographic theories dual to Einstein gravity, this c-function is shown to decrease monotonically along RG flows. A sufficient condition required for this monotonic flow is that the stress tensor of the matter fields driving the holographic RG flow must satisfy the null energy condition over the holographic surface used to calculate the entanglement entropy. In the case where the bulk theory is described by Gauss-Bonnet gravity, the latter condition alone is not sufficient to establish the monotonic flow of the c-function. We also observe that for certain holographic RG flows, the entanglement entropy undergoes a 'phase transition' as the size of the system grows and as a result, evolution of the c-function may exhibit a discontinuous drop.Comment: References adde

    Towards the F-Theorem: N=2 Field Theories on the Three-Sphere

    Full text link
    For 3-dimensional field theories with {\cal N}=2 supersymmetry the Euclidean path integrals on the three-sphere can be calculated using the method of localization; they reduce to certain matrix integrals that depend on the R-charges of the matter fields. We solve a number of such large N matrix models and calculate the free energy F as a function of the trial R-charges consistent with the marginality of the superpotential. In all our {\cal N}=2 superconformal examples, the local maximization of F yields answers that scale as N^{3/2} and agree with the dual M-theory backgrounds AdS_4 x Y, where Y are 7-dimensional Sasaki-Einstein spaces. We also find in toric examples that local F-maximization is equivalent to the minimization of the volume of Y over the space of Sasakian metrics, a procedure also referred to as Z-minimization. Moreover, we find that the functions F and Z are related for any trial R-charges. In the models we study F is positive and decreases along RG flows. We therefore propose the "F-theorem" that we hope applies to all 3-d field theories: the finite part of the free energy on the three-sphere decreases along RG trajectories and is stationary at RG fixed points. We also show that in an infinite class of Chern-Simons-matter gauge theories where the Chern-Simons levels do not sum to zero, the free energy grows as N^{5/3} at large N. This non-trivial scaling matches that of the free energy of the gravity duals in type IIA string theory with Romans mass.Comment: 66 pages, 10 figures; v2: refs. added, minor improvement

    M-Branes and Metastable States

    Full text link
    We study a supersymmetry breaking deformation of the M-theory background found in arXiv:hep-th/0012011. The supersymmetric solution is a warped product of R^{2,1} and the 8-dimensional Stenzel space, which is a higher dimensional generalization of the deformed conifold. At the bottom of the warped throat there is a 4-sphere threaded by \tilde{M} units of 4-form flux. The dual (2+1)-dimensional theory has a discrete spectrum of bound states. We add p anti-M2 branes at a point on the 4-sphere, and show that they blow up into an M5-brane wrapping a 3-sphere at a fixed azimuthal angle on the 4-sphere. This supersymmetry breaking state turns out to be metastable for p / \tilde{M} < 0.054. We find a smooth O(3)-symmetric Euclidean bounce solution in the M5-brane world volume theory that describes the decay of the false vacuum. Calculation of the Euclidean action shows that the metastable state is extremely long-lived. We also describe the corresponding metastable states and their decay in the type IIA background obtained by reduction along one of the spatial directions of R^{2,1}.Comment: 33 pages, 5 figures; v2 note adde

    Metastable Vacua and the Backreacted Stenzel Geometry

    Full text link
    We construct an M-theory background dual to the metastable state recently discussed by Klebanov and Pufu, which corresponds to placing a stack of anti-M2 branes at the tip of a warped Stenzel space. With this purpose we analytically solve for the linearized non-supersymmetric deformations around the warped Stenzel space, preserving the SO(5) symmetries of the supersymmetric background, and which interpolate between the IR and UV region. We identify the supergravity solution which corresponds to a stack of Nˉ\bar{N} backreacting anti-M2 branes by fixing all the 12 integration constants in terms of Nˉ\bar{N}. While in the UV this solution has the desired features to describe the conjectured metastable state of the dual (2+1)-dimensional theory, in the IR it suffers from a singularity in the four-form flux, which we describe in some details.Comment: 33 pages, 3 figure

    Holographic Renormalization and Stress Tensors in New Massive Gravity

    Full text link
    We obtain holographically renormalized boundary stress tensors with the emphasis on a special point in the parameter space of three dimensional new massive gravity, using the so-called Fefferman-Graham coordinates with relevant counter terms. Through the linearized equations of motion with a standard prescription, we also obtain correlators among these stress tensors. We argue that the self-consistency of holographic renormalization determines counter terms up to unphysical ambiguities. Using these renormalized stress tensors in Fefferman-Graham coordinates, we obtain the central charges of dual CFT, and mass and angular momentum of some AdSAdS black hole solutions. These results are consistent with the previous ones obtained by other methods. In this study on the Fefferman-Graham expansion of new massive gravity, some aspects of higher curvature gravity are revealed.Comment: Version accepted for publication in JHEP, conclusion revised, references adde
    corecore