3,162 research outputs found
Determinants of adults' intention to vaccinate against pandemic swine flu
This article has been made available through the Brunel Open Access Publishing Fund.This article has been made available through the Brunel Open Access Publishing Fund.Background: Vaccination is one of the cornerstones of controlling an influenza pandemic. To optimise vaccination rates in the general population, ways of identifying determinants that influence decisions to have or not to have a vaccination need to be understood. Therefore, this study aimed to predict intention to have a swine influenza
vaccination in an adult population in the UK. An extension of the Theory of Planned Behaviour provided the theoretical framework for the study.
Methods: Three hundred and sixty two adults from the UK, who were not in vaccination priority groups, completed either an online (n = 306) or pen and paper (n = 56) questionnaire. Data were collected from 30th October 2009, just after swine flu vaccination became available in the UK, and concluded on 31st December 2009. The main outcome of interest was future swine flu vaccination intentions.
Results: The extended Theory of Planned Behaviour predicted 60% of adults’ intention to have a swine flu vaccination with attitude, subjective norm, perceived control, anticipating feelings of regret (the impact of missing a vaccination opportunity), intention to have a seasonal vaccine this year, one perceived barrier: “I cannot be bothered to get a swine flu vaccination” and two perceived benefits: “vaccination decreases my chance of getting swine flu or its complications” and “if I get vaccinated for swine flu, I will decrease the frequency of having to consult my doctor,” being significant predictors of intention. Black British were less likely to intend to have a vaccination compared to Asian or White respondents.
Conclusions: Theoretical frameworks which identify determinants that influence decisions to have a pandemic influenza vaccination are useful. The implications of this research are discussed with a view to maximising any future pandemic influenza vaccination uptake using theoretically-driven applications.This article is available through the Brunel Open Access Publishing Fund
Assessing a candidate IIA dual to metastable supersymmetry-breaking
We analyze the space of linearized non-supersymmetric deformations around a
IIA solution found by Cvetic, Gibbons, Lu and Pope (CGLP) in hep-th/0101096. We
impose boundary conditions aimed at singling out among those perturbations
those describing the backreaction of anti-D2 branes on the CGLP background. The
corresponding supergravity solution is a would-be dual to a metastable
supersymmetry-breaking state. However, it turns out that this candidate bulk
solution is inevitably riddled with IR divergences of its flux densities and
action, whose physical meaning and implications for models of string cosmology
call for further investigation.Comment: 33 pages. v2: reference added, clarifications in the introductio
Application of the speed-duration relationship to normalize the intensity of high-intensity interval training
The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4×4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4×4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols
Z-extremization and F-theorem in Chern-Simons matter theories
The three dimensional exact R symmetry of N=2 SCFTs extremizes the partition
function localized on a three sphere. Here we verify this statement at weak
coupling. We give a detailed analysis for two classes of models. The first one
is an SU(N)_k gauge theory at large k with both fundamental and adjoint matter
fields, while the second is a flavored version of the ABJ theory, where the CS
levels are large but they do not necessarily sum up to zero. We study in both
cases superpotential deformations and compute the R charges at different fixed
points. When these fixed points are connected by an RG flow we explicitly
verify that the free energy decreases at the endpoints of the flow between the
fixed points, corroborating the conjecture of an F-theorem in three dimensions.Comment: 28 pages, 3 figures, JHEP.cls, minor corrections, references adde
The Constraints of Conformal Symmetry on RG Flows
If the coupling constants in QFT are promoted to functions of space-time, the
dependence of the path integral on these couplings is highly constrained by
conformal symmetry. We begin the present note by showing that this idea leads
to a new proof of Zamolodchikov's theorem. We then review how this simple
observation also leads to a derivation of the a-theorem. We exemplify the
general procedure in some interacting theories in four space-time dimensions.
We concentrate on Banks-Zaks and weakly relevant flows, which can be controlled
by ordinary and conformal perturbation theories, respectively. We compute
explicitly the dependence of the path integral on the coupling constants and
extract the change in the a-anomaly (this agrees with more conventional
computations of the same quantity). We also discuss some general properties of
the sum rule found in arXiv:1107.3987 and study it in several examples.Comment: 25 pages, 5 figure
Comments on Holographic Entanglement Entropy and RG Flows
Using holographic entanglement entropy for strip geometry, we construct a
candidate for a c-function in arbitrary dimensions. For holographic theories
dual to Einstein gravity, this c-function is shown to decrease monotonically
along RG flows. A sufficient condition required for this monotonic flow is that
the stress tensor of the matter fields driving the holographic RG flow must
satisfy the null energy condition over the holographic surface used to
calculate the entanglement entropy. In the case where the bulk theory is
described by Gauss-Bonnet gravity, the latter condition alone is not sufficient
to establish the monotonic flow of the c-function. We also observe that for
certain holographic RG flows, the entanglement entropy undergoes a 'phase
transition' as the size of the system grows and as a result, evolution of the
c-function may exhibit a discontinuous drop.Comment: References adde
Towards the F-Theorem: N=2 Field Theories on the Three-Sphere
For 3-dimensional field theories with {\cal N}=2 supersymmetry the Euclidean
path integrals on the three-sphere can be calculated using the method of
localization; they reduce to certain matrix integrals that depend on the
R-charges of the matter fields. We solve a number of such large N matrix models
and calculate the free energy F as a function of the trial R-charges consistent
with the marginality of the superpotential. In all our {\cal N}=2
superconformal examples, the local maximization of F yields answers that scale
as N^{3/2} and agree with the dual M-theory backgrounds AdS_4 x Y, where Y are
7-dimensional Sasaki-Einstein spaces. We also find in toric examples that local
F-maximization is equivalent to the minimization of the volume of Y over the
space of Sasakian metrics, a procedure also referred to as Z-minimization.
Moreover, we find that the functions F and Z are related for any trial
R-charges. In the models we study F is positive and decreases along RG flows.
We therefore propose the "F-theorem" that we hope applies to all 3-d field
theories: the finite part of the free energy on the three-sphere decreases
along RG trajectories and is stationary at RG fixed points. We also show that
in an infinite class of Chern-Simons-matter gauge theories where the
Chern-Simons levels do not sum to zero, the free energy grows as N^{5/3} at
large N. This non-trivial scaling matches that of the free energy of the
gravity duals in type IIA string theory with Romans mass.Comment: 66 pages, 10 figures; v2: refs. added, minor improvement
M-Branes and Metastable States
We study a supersymmetry breaking deformation of the M-theory background
found in arXiv:hep-th/0012011. The supersymmetric solution is a warped product
of R^{2,1} and the 8-dimensional Stenzel space, which is a higher dimensional
generalization of the deformed conifold. At the bottom of the warped throat
there is a 4-sphere threaded by \tilde{M} units of 4-form flux. The dual
(2+1)-dimensional theory has a discrete spectrum of bound states. We add p
anti-M2 branes at a point on the 4-sphere, and show that they blow up into an
M5-brane wrapping a 3-sphere at a fixed azimuthal angle on the 4-sphere. This
supersymmetry breaking state turns out to be metastable for p / \tilde{M} <
0.054. We find a smooth O(3)-symmetric Euclidean bounce solution in the
M5-brane world volume theory that describes the decay of the false vacuum.
Calculation of the Euclidean action shows that the metastable state is
extremely long-lived. We also describe the corresponding metastable states and
their decay in the type IIA background obtained by reduction along one of the
spatial directions of R^{2,1}.Comment: 33 pages, 5 figures; v2 note adde
Metastable Vacua and the Backreacted Stenzel Geometry
We construct an M-theory background dual to the metastable state recently
discussed by Klebanov and Pufu, which corresponds to placing a stack of anti-M2
branes at the tip of a warped Stenzel space. With this purpose we analytically
solve for the linearized non-supersymmetric deformations around the warped
Stenzel space, preserving the SO(5) symmetries of the supersymmetric
background, and which interpolate between the IR and UV region. We identify the
supergravity solution which corresponds to a stack of backreacting
anti-M2 branes by fixing all the 12 integration constants in terms of
. While in the UV this solution has the desired features to describe
the conjectured metastable state of the dual (2+1)-dimensional theory, in the
IR it suffers from a singularity in the four-form flux, which we describe in
some details.Comment: 33 pages, 3 figure
Holographic Renormalization and Stress Tensors in New Massive Gravity
We obtain holographically renormalized boundary stress tensors with the
emphasis on a special point in the parameter space of three dimensional new
massive gravity, using the so-called Fefferman-Graham coordinates with relevant
counter terms. Through the linearized equations of motion with a standard
prescription, we also obtain correlators among these stress tensors. We argue
that the self-consistency of holographic renormalization determines counter
terms up to unphysical ambiguities. Using these renormalized stress tensors in
Fefferman-Graham coordinates, we obtain the central charges of dual CFT, and
mass and angular momentum of some black hole solutions. These results are
consistent with the previous ones obtained by other methods. In this study on
the Fefferman-Graham expansion of new massive gravity, some aspects of higher
curvature gravity are revealed.Comment: Version accepted for publication in JHEP, conclusion revised,
references adde
- …
