4 research outputs found

    Antisense DNA parameters derived from next-nearest-neighbor analysis of experimental data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The enumeration of tetrameric and other sequence motifs that are positively or negatively correlated with <it>in vivo </it>antisense DNA effects has been a useful addition to the arsenal of information needed to predict effective targets for antisense DNA control of gene expression. Such retrospective information derived from <it>in vivo </it>cellular experiments characterizes aspects of the sequence dependence of antisense inhibition that are not predicted by nearest-neighbor (NN) thermodynamic parameters derived from <it>in vitro </it>experiments. However, quantitation of the antisense contributions of motifs is problematic, since individual motifs are not isolated from the effects of neighboring nucleotides, and motifs may be overlapping. These problems are circumvented by a next-nearest-neighbor (NNN) analysis of antisense DNA effects in which the overlapping nature of nearest-neighbors is taken into account.</p> <p>Results</p> <p>Next-nearest-neighbor triplet combinations of nucleotides are the simplest that include overlapping sequence effects and therefore can encompass interactions beyond those of nearest neighbors. We used singular value decomposition (SVD) to fit experimental data from our laboratory in which phosphorothioate-modified antisense DNAs (S-DNAs) 20 nucleotides long were used to inhibit cellular protein expression in 112 experiments involving four gene targets and two cell lines. Data were fitted using a NNN model, neglecting end effects, to derive NNN inhibition parameters that could be combined to give parameters for a set of 49 sequences that represents the inhibitory effects of all possible overlapping triplet interactions in the cellular targets of these antisense S-DNAs. We also show that parameters to describe subsets of the data, such as the mRNAs being targeted and the cell lines used, can be included in such a derivation. While NNN triplet parameters provided an adequate model to fit our data, NN doublet parameters did not.</p> <p>Conclusions</p> <p>The methodology presented illustrates how NNN antisense inhibitory information can be derived from <it>in vivo </it>cellular experiments. Subsequent calculations of the antisense inhibitory parameters for any mRNA target sequence automatically take into account the effects of all possible overlapping combinations of nearest-neighbors in the sequence. This procedure is more robust than the tallying of tetrameric motifs that have positive or negative antisense effects. The specific parameters derived in this work are limited in their applicability by the relatively small database of experiments that was used in their derivation.</p

    Support vector machine model for diagnosis of lymph node metastasis in gastric cancer with multidetector computed tomography: a preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymph node metastasis (LNM) of gastric cancer is an important prognostic factor regarding long-term survival. But several imaging techniques which are commonly used in stomach cannot satisfactorily assess the gastric cancer lymph node status. They can not achieve both high sensitivity and specificity. As a kind of machine-learning methods, Support Vector Machine has the potential to solve this complex issue.</p> <p>Methods</p> <p>The institutional review board approved this retrospective study. 175 consecutive patients with gastric cancer who underwent MDCT before surgery were included. We evaluated the tumor and lymph node indicators on CT images including serosal invasion, tumor classification, tumor maximum diameter, number of lymph nodes, maximum lymph node size and lymph nodes station, which reflected the biological behavior of gastric cancer. Univariate analysis was used to analyze the relationship between the six image indicators with LNM. A SVM model was built with these indicators above as input index. The output index was that lymph node metastasis of the patient was positive or negative. It was confirmed by the surgery and histopathology. A standard machine-learning technique called k-fold cross-validation (5-fold in our study) was used to train and test SVM models. We evaluated the diagnostic capability of the SVM models in lymph node metastasis with the receiver operating characteristic (ROC) curves. And the radiologist classified the lymph node metastasis of patients by using maximum lymph node size on CT images as criterion. We compared the areas under ROC curves (AUC) of the radiologist and SVM models.</p> <p>Results</p> <p>In 175 cases, the cases of lymph node metastasis were 134 and 41 cases were not. The six image indicators all had statistically significant differences between the LNM negative and positive groups. The means of the sensitivity, specificity and AUC of SVM models with 5-fold cross-validation were 88.5%, 78.5% and 0.876, respectively. While the diagnostic power of the radiologist classifying lymph node metastasis by maximum lymph node size were only 63.4%, 75.6% and 0.757. Each SVM model of the 5-fold cross-validation performed significantly better than the radiologist.</p> <p>Conclusions</p> <p>Based on biological behavior information of gastric cancer on MDCT images, SVM model can help diagnose the lymph node metastasis preoperatively.</p

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings
    corecore