23 research outputs found

    Climatic and topographic changes since the Miocene influenced the diversification and biogeography of the tent tortoise (Psammobates tentorius) species complex in Southern Africa

    Get PDF
    Background: Climatic and topographic changes function as key drivers in shaping genetic structure and cladogenic radiation in many organisms. Southern Africa has an exceptionally diverse tortoise fauna, harbouring one-third of the world’s tortoise genera. The distribution of Psammobates tentorius (Kuhl, 1820) covers two of the 25 biodiversity hotspots in the world, the Succulent Karoo and Cape Floristic Region. The highly diverged P. tentorius represents an excellent model species for exploring biogeographic and radiation patterns of reptiles in Southern Africa. Results: We investigated genetic structure and radiation patterns against temporal and spatial dimensions since the Miocene in the Psammobates tentorius species complex, using multiple types of DNA markers and niche modelling analyses. Cladogenesis in P. tentorius started in the late Miocene (11.63–5.33 Ma) when populations dispersed from north to south to form two geographically isolated groups. The northern group diverged into a clade north of the Orange River (OR), followed by the splitting of the group south of the OR into a western and an interior clade. The latter divergence corresponded to the intensifcation of the cold Benguela current, which caused western aridifcation and rainfall seasonality. In the south, tectonic uplift and subsequent exhumation, together with climatic fuctuations seemed responsible for radiations among the four southern clades since the late Miocene. We found that each clade occurred in a habitat shaped by diferent climatic parameters, and that the niches difered substantially among the clades of the northern group but were similar among clades of the southern group. Conclusion: Climatic shifts, and biome and geographic changes were possibly the three major driving forces shaping cladogenesis and genetic structure in Southern African tortoise species. Our results revealed that the cladogenesis of the P. tentorius species complex was probably shaped by environmental cooling, biome shifts and topographic uplift in Southern Africa since the late Miocene. The Last Glacial Maximum (LGM) may have impacted the distribution of P. tentorius substantially. We found the taxonomic diversify of the P. tentorius species complex to be highest in the Greater Cape Floristic Region. All seven clades discovered warrant conservation attention, particularly Ptt-B–Ptr, Ptt-A and Pv-

    Discovery of novel intermediate forms redefines the fungal tree of life

    No full text
    Nature letterFungi are the principal degraders of biomass in terrestrial ecosystems and establish important interactions with plants and animals1, 2, 3. However, our current understanding of fungal evolutionary diversity is incomplete4 and is based upon species amenable to growth in culture1. These culturable fungi are typically yeast or filamentous forms, bound by a rigid cell wall rich in chitin. Evolution of this body plan was thought critical for the success of the Fungi, enabling them to adapt to heterogeneous habitats and live by osmotrophy: extracellular digestion followed by nutrient uptake5. Here we investigate the ecology and cell biology of a previously undescribed and highly diverse form of eukaryotic life that branches with the Fungi, using environmental DNA analyses combined with fluorescent detection via DNA probes. This clade is present in numerous ecosystems including soil, freshwater and aquatic sediments. Phylogenetic analyses using multiple ribosomal RNA genes place this clade with Rozella, the putative primary branch of the fungal kingdom1. Tyramide signal amplification coupled with group-specific fluorescence in situ hybridization reveals that the target cells are small eukaryotes of 3–5 μm in length, capable of forming a microtubule-based flagellum. Co-staining with cell wall markers demonstrates that representatives from the clade do not produce a chitin-rich cell wall during any of the life cycle stages observed and therefore do not conform to the standard fungal body plan5. We name this highly diverse clade the cryptomycota in anticipation of formal classificationThis work was primarily supported by a Natural Environment Research Council grant UK (NE/F011709/1). Additional support came from the Systematic Research Fund (awarded by the Systematics Association and the Linnean Society) to T.A.R., project FLAME (CGL2010-16304, MICINN) to R. M. and the BioMarKs project (European Funding Agencies from the ERA-net program BiodivERsA) to T.A.R. and R.M.Peer reviewe
    corecore