8 research outputs found

    Combination immunotherapy and active-specific tumor cell vaccination augments anti-cancer immunity in a mouse model of gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Active-specific immunotherapy used as an adjuvant therapeutic strategy is rather unexplored for cancers with poorly characterized tumor antigens like gastric cancer. The aim of this study was to augment a therapeutic immune response to a low immunogenic tumor cell line derived from a spontaneous gastric tumor of a CEA424-SV40 large T antigen (CEA424-SV40 TAg) transgenic mouse.</p> <p>Methods</p> <p>Mice were treated with a lymphodepleting dose of cyclophosphamide prior to reconstitution with syngeneic spleen cells and vaccination with a whole tumor cell vaccine combined with GM-CSF (a treatment strategy abbreviated as LRAST). Anti-tumor activity to subcutaneous tumor challenge was examined in a prophylactic as well as a therapeutic setting and compared to corresponding controls.</p> <p>Results</p> <p>LRAST enhances tumor-specific T cell responses and efficiently inhibits growth of subsequent transplanted tumor cells. In addition, LRAST tended to slow down growth of established tumors. The improved anti-tumor immune response was accompanied by a transient decrease in the frequency and absolute number of CD4<sup>+</sup>CD25<sup>+</sup>FoxP3<sup>+ </sup>T cells (Tregs).</p> <p>Conclusions</p> <p>Our data support the concept that whole tumor cell vaccination in a lymphodepleted and reconstituted host in combination with GM-CSF induces therapeutic tumor-specific T cells. However, the long-term efficacy of the treatment may be dampened by the recurrence of Tregs. Strategies to counteract suppressive immune mechanisms are required to further evaluate this therapeutic vaccination protocol.</p

    Determining the use of prophylactic antibiotics in breast cancer surgeries : a survey of practice

    Get PDF
    Q3Q2Background: Prophylactic antibiotics (PAs) are beneficial to breast cancer patients undergoing surgery because they prevent surgical site infection (SSI), but limited information regarding their use has been published. This study aims to determine the use of PAs prior to breast cancer surgery amongst breast surgeons in Colombia. Methods: An online survey was distributed amongst the breast surgeon members of the Colombian Association of Mastology, the only breast surgery society of Colombia. The scope of the questions included demographics, clinical practice characteristics, PA prescription characteristics, and the use of PAs in common breast surgical procedures. Results: The survey was distributed amongst eighty-eight breast surgeons of whom forty-seven responded (response rate: 53.4%). Forty surgeons (85.1%) reported using PAs prior to surgery of which >60% used PAs during mastectomy, axillary lymph node dissection, and/or breast reconstruction. Surgeons reported they targeted the use of PAs in cases in which patients had any of the following SSI risk factors: diabetes mellitus, drains in situ, obesity, and neoadjuvant therapy. The distribution of the self-reported PA dosing regimens was as follows: single pre-operative fixed-dose (27.7%), single preoperative dose followed by a second dose if the surgery was prolonged (44.7%), single preoperative dose followed by one or more postoperative doses for >24 hours (10.6%), and single preoperative weight-adjusted dose (2.1%). Conclusion: Although this group of breast surgeons is aware of the importance of PAs in breast cancer surgery there is a discrepancy in how they use it, specifically with regards to prescription and timeliness of drug administration. Our findings call for targeted quality-improvement initiatives, such as standardized national guidelines, which can provide sufficient evidence for all stakeholders and therefore facilitate best practice medicine for breast cancer surgery

    Complications of mastectomy

    No full text
    corecore