4 research outputs found

    Phospholipase C Isozymes Are Deregulated in Colorectal Cancer – Insights Gained from Gene Set Enrichment Analysis of the Transcriptome

    Get PDF
    Colorectal cancer (CRC) is one of the most common cancer types in developed countries. To identify molecular networks and biological processes that are deregulated in CRC compared to normal colonic mucosa, we applied Gene Set Enrichment Analysis to two independent transcriptome datasets, including a total of 137 CRC and ten normal colonic mucosa samples. Eighty-two gene sets as described by the Kyoto Encyclopedia of Genes and Genomes database had significantly altered gene expression in both datasets. These included networks associated with cell division, DNA maintenance, and metabolism. Among signaling pathways with known changes in key genes, the “Phosphatidylinositol signaling network”, comprising part of the PI3K pathway, was found deregulated. The downregulated genes in this pathway included several members of the Phospholipase C protein family, and the reduced expression of two of these, PLCD1 and PLCE1, were successfully validated in CRC biopsies (n = 70) and cell lines (n = 19) by quantitative analyses. The repression of both genes was found associated with KRAS mutations (P = 0.005 and 0.006, respectively), and we observed that microsatellite stable carcinomas with reduced PLCD1 expression more frequently had TP53 mutations (P = 0.002). Promoter methylation analyses of PLCD1 and PLCE1 performed in cell lines and tumor biopsies revealed that methylation of PLCD1 can contribute to reduced expression in 40% of the microsatellite instable carcinomas. In conclusion, we have identified significantly deregulated pathways in CRC, and validated repression of PLCD1 and PLCE1 expression. This illustrates that the GSEA approach may guide discovery of novel biomarkers in cancer

    Alopecia in a Viable Phospholipase C Delta 1 and Phospholipase C Delta 3 Double Mutant

    Get PDF
    BACKGROUND: Inositol 1,4,5trisphosphate (IP(3)) and diacylglycerol (DAG) are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab)) that resulted from the insertion of an intracisternal A particle (IAP) into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab) alleles are phenotypically normal. However, the presence of one Plcd3(mNab) allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9)olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9)olt1Pas and the Plcd3(mNab) mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE: The Plcd3(mNab) mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface
    corecore