252 research outputs found
A gene signature for post-infectious chronic fatigue syndrome
Background: At present, there are no clinically reliable disease markers for chronic fatigue syndrome. DNA chip microarray technology provides a method for examining the differential expression of mRNA from a large number of genes. Our hypothesis was that a gene expression signature, generated by microarray assays, could help identify genes which are dysregulated in patients with post-infectious CFS and so help identify biomarkers for the condition. Methods: Human genome-wide Affymetrix GeneChip arrays (39,000 transcripts derived from 33,000 gene sequences) were used to compare the levels of gene expression in the peripheral blood mononuclear cells of male patients with post-infectious chronic fatigue (n = 8) and male healthy control subjects (n = 7). Results: Patients and healthy subjects differed significantly in the level of expression of 366 genes. Analysis of the differentially expressed genes indicated functional implications in immune modulation, oxidative stress and apoptosis. Prototype biomarkers were identified on the basis of differential levels of gene expression and possible biological significance Conclusion: Differential expression of key genes identified in this study offer an insight into the possible mechanism of chronic fatigue following infection. The representative biomarkers identified in this research appear promising as potential biomarkers for diagnosis and treatment
Enhanced Inflammasome Activity in Systemic Lupus Erythematosus Is Mediated via Type I Interferon–Induced Up‐Regulation of Interferon Regulatory Factor 1
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138234/1/art40166_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138234/2/art40166.pd
Expanding the Understanding of Biases in Development of Clinical-Grade Molecular Signatures: A Case Study in Acute Respiratory Viral Infections
The promise of modern personalized medicine is to use molecular and clinical information to better diagnose, manage, and treat disease, on an individual patient basis. These functions are predominantly enabled by molecular signatures, which are computational models for predicting phenotypes and other responses of interest from high-throughput assay data. Data-analytics is a central component of molecular signature development and can jeopardize the entire process if conducted incorrectly. While exploratory data analysis may tolerate suboptimal protocols, clinical-grade molecular signatures are subject to vastly stricter requirements. Closing the gap between standards for exploratory versus clinically successful molecular signatures entails a thorough understanding of possible biases in the data analysis phase and developing strategies to avoid them.Using a recently introduced data-analytic protocol as a case study, we provide an in-depth examination of the poorly studied biases of the data-analytic protocols related to signature multiplicity, biomarker redundancy, data preprocessing, and validation of signature reproducibility. The methodology and results presented in this work are aimed at expanding the understanding of these data-analytic biases that affect development of clinically robust molecular signatures.Several recommendations follow from the current study. First, all molecular signatures of a phenotype should be extracted to the extent possible, in order to provide comprehensive and accurate grounds for understanding disease pathogenesis. Second, redundant genes should generally be removed from final signatures to facilitate reproducibility and decrease manufacturing costs. Third, data preprocessing procedures should be designed so as not to bias biomarker selection. Finally, molecular signatures developed and applied on different phenotypes and populations of patients should be treated with great caution
SIGNATURE: A workbench for gene expression signature analysis
<p>Abstract</p> <p>Background</p> <p>The biological phenotype of a cell, such as a characteristic visual image or behavior, reflects activities derived from the expression of collections of genes. As such, an ability to measure the expression of these genes provides an opportunity to develop more precise and varied sets of phenotypes. However, to use this approach requires computational methods that are difficult to implement and apply, and thus there is a critical need for intelligent software tools that can reduce the technical burden of the analysis. Tools for gene expression analyses are unusually difficult to implement in a user-friendly way because their application requires a combination of biological data curation, statistical computational methods, and database expertise.</p> <p>Results</p> <p>We have developed SIGNATURE, a web-based resource that simplifies gene expression signature analysis by providing software, data, and protocols to perform the analysis successfully. This resource uses Bayesian methods for processing gene expression data coupled with a curated database of gene expression signatures, all carried out within a GenePattern web interface for easy use and access.</p> <p>Conclusions</p> <p>SIGNATURE is available for public use at <url>http://genepattern.genome.duke.edu/signature/</url>.</p
Comprehensive Survey of SNPs in the Affymetrix Exon Array Using the 1000 Genomes Dataset
Microarray gene expression data has been used in genome-wide association studies to allow researchers to study gene regulation as well as other complex phenotypes including disease risks and drug response. To reach scientifically sound conclusions from these studies, however, it is necessary to get reliable summarization of gene expression intensities. Among various factors that could affect expression profiling using a microarray platform, single nucleotide polymorphisms (SNPs) in target mRNA may lead to reduced signal intensity measurements and result in spurious results. The recently released 1000 Genomes Project dataset provides an opportunity to evaluate the distribution of both known and novel SNPs in the International HapMap Project lymphoblastoid cell lines (LCLs). We mapped the 1000 Genomes Project genotypic data to the Affymetrix GeneChip Human Exon 1.0ST array (exon array), which had been used in our previous studies and for which gene expression data had been made publicly available. We also evaluated the potential impact of these SNPs on the differentially spliced probesets we had identified previously. Though the 1000 Genomes Project data allowed a comprehensive survey of the SNPs in this particular array, the same approach can certainly be applied to other microarray platforms. Furthermore, we present a detailed catalogue of SNP-containing probesets (exon-level) and transcript clusters (gene-level), which can be considered in evaluating findings using the exon array as well as benefit the design of follow-up experiments and data re-analysis
Genome wide in silico SNP-tumor association analysis
BACKGROUND: Carcinogenesis occurs, at least in part, due to the accumulation of mutations in critical genes that control the mechanisms of cell proliferation, differentiation and death. Publicly accessible databases contain millions of expressed sequence tag (EST) and single nucleotide polymorphism (SNP) records, which have the potential to assist in the identification of SNPs overrepresented in tumor tissue. METHODS: An in silico SNP-tumor association study was performed utilizing tissue library and SNP information available in NCBI's dbEST (release 092002) and dbSNP (build 106). RESULTS: A total of 4865 SNPs were identified which were present at higher allele frequencies in tumor compared to normal tissues. A subset of 327 (6.7%) SNPs induce amino acid changes to the protein coding sequences. This approach identified several SNPs which have been previously associated with carcinogenesis, as well as a number of SNPs that now warrant further investigation CONCLUSIONS: This novel in silico approach can assist in prioritization of genes and SNPs in the effort to elucidate the genetic mechanisms underlying the development of cancer
Global gene expression patterns in the post-pneumonectomy lung of adult mice
<p>Abstract</p> <p>Background</p> <p>Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration.</p> <p>Methods</p> <p>Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points). Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days) and analyzed using microarray technology.</p> <p>Results</p> <p>The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1), as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis.</p> <p>Conclusion</p> <p>These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.</p
New resources for functional analysis of omics data for the genus Aspergillus
<p>Abstract</p> <p>Background</p> <p>Detailed and comprehensive genome annotation can be considered a prerequisite for effective analysis and interpretation of omics data. As such, Gene Ontology (GO) annotation has become a well accepted framework for functional annotation. The genus <it>Aspergillus </it>comprises fungal species that are important model organisms, plant and human pathogens as well as industrial workhorses. However, GO annotation based on both computational predictions and extended manual curation has so far only been available for one of its species, namely <it>A. nidulans</it>.</p> <p>Results</p> <p>Based on protein homology, we mapped 97% of the 3,498 GO annotated <it>A. nidulans </it>genes to at least one of seven other <it>Aspergillus </it>species: <it>A. niger</it>, <it>A. fumigatus</it>, <it>A. flavus</it>, <it>A. clavatus</it>, <it>A. terreus</it>, <it>A. oryzae </it>and <it>Neosartorya fischeri</it>. GO annotation files compatible with diverse publicly available tools have been generated and deposited online. To further improve their accessibility, we developed a web application for GO enrichment analysis named FetGOat and integrated GO annotations for all <it>Aspergillus </it>species with public genome sequences. Both the annotation files and the web application FetGOat are accessible via the Broad Institute's website (<url>http://www.broadinstitute.org/fetgoat/index.html</url>). To demonstrate the value of those new resources for functional analysis of omics data for the genus <it>Aspergillus</it>, we performed two case studies analyzing microarray data recently published for <it>A. nidulans</it>, <it>A. niger </it>and <it>A. oryzae</it>.</p> <p>Conclusions</p> <p>We mapped <it>A. nidulans </it>GO annotation to seven other <it>Aspergilli</it>. By depositing the newly mapped GO annotation online as well as integrating it into the web tool FetGOat, we provide new, valuable and easily accessible resources for omics data analysis and interpretation for the genus <it>Aspergillus</it>. Furthermore, we have given a general example of how a well annotated genome can help improving GO annotation of related species to subsequently facilitate the interpretation of omics data.</p
Accurate Expression Profiling of Very Small Cell Populations
BACKGROUND: Expression profiling, the measurement of all transcripts of a cell or tissue type, is currently the most comprehensive method to describe their physiological states. Given that accurate profiling methods currently available require RNA amounts found in thousands to millions of cells, many fields of biology working with specialized cell types cannot use these techniques because available cell numbers are limited. Currently available alternative methods for expression profiling from nanograms of RNA or from very small cell populations lack a broad validation of results to provide accurate information about the measured transcripts. METHODS AND FINDINGS: We provide evidence that currently available methods for expression profiling of very small cell populations are prone to technical noise and therefore cannot be used efficiently as discovery tools. Furthermore, we present Pico Profiling, a new expression profiling method from as few as ten cells, and we show that this approach is as informative as standard techniques from thousands to millions of cells. The central component of Pico Profiling is Whole Transcriptome Amplification (WTA), which generates expression profiles that are highly comparable to those produced by others, at different times, by standard protocols or by Real-time PCR. We provide a complete workflow from RNA isolation to analysis of expression profiles. CONCLUSIONS: Pico Profiling, as presented here, allows generating an accurate expression profile from cell populations as small as ten cells
- …