4,339 research outputs found
Emergency department documentation templates: variability in template selection and association with physical examination and test ordering in dizziness presentations
Abstract
Background
Clinical documentation systems, such as templates, have been associated with process utilization. The T-System emergency department (ED) templates are widely used but lacking are analyses of the templates association with processes. This system is also unique because of the many different template options available, and thus the selection of the template may also be important. We aimed to describe the selection of templates in ED dizziness presentations and to investigate the association between items on templates and process utilization.
Methods
Dizziness visits were captured from a population-based study of EDs that use documentation templates. Two relevant process outcomes were assessed: head computerized tomography (CT) scan and nystagmus examination. Multivariable logistic regression was used to estimate the probability of each outcome for patients who did or did not receive a relevant-item template. Propensity scores were also used to adjust for selection effects.
Results
The final cohort was 1,485 visits. Thirty-one different templates were used. Use of a template with a head CT item was associated with an increase in the adjusted probability of head CT utilization from 12.2% (95% CI, 8.9%-16.6%) to 29.3% (95% CI, 26.0%-32.9%). The adjusted probability of documentation of a nystagmus assessment increased from 12.0% (95%CI, 8.8%-16.2%) when a nystagmus-item template was not used to 95.0% (95% CI, 92.8%-96.6%) when a nystagmus-item template was used. The associations remained significant after propensity score adjustments.
Conclusions
Providers use many different templates in dizziness presentations. Important differences exist in the various templates and the template that is used likely impacts process utilization, even though selection may be arbitrary. The optimal design and selection of templates may offer a feasible and effective opportunity to improve care delivery.http://deepblue.lib.umich.edu/bitstream/2027.42/112490/1/12913_2010_Article_1586.pd
From Food to Offspring Down: Tissue-Specific Discrimination and Turn-Over of Stable Isotopes in Herbivorous Waterbirds and Other Avian Foraging Guilds
Isotopic discrimination and turn-over are fundamental to the application of stable isotope ecology in animals. However, detailed information for specific tissues and species are widely lacking, notably for herbivorous species. We provide details on tissue-specific carbon and nitrogen discrimination and turn-over times from food to blood, feathers, claws, egg tissues and offspring down feathers in four species of herbivorous waterbirds. Source-to-tissue discrimination factors for carbon (δ13C) and nitrogen stable isotope ratios (δ15N) showed little variation across species but varied between tissues. Apparent discrimination factors ranged between −0.5 to 2.5‰ for δ13C and 2.8 to 5.2‰ for δ15N, and were more similar between blood components than between keratinous tissues or egg tissue. Comparing these results with published data from other species we found no effect of foraging guild on discrimination factors for carbon but a significant foraging-guild effect for nitrogen discrimination factors
Genetic and biochemical analyses of chromosome and plasmid gene homologues encoding ICL and ArCP domains in Vibrioanguillarum strain 775
Anguibactin, the siderophore produced by Vibrio anguillarum 775 is synthesized from 2,3-dihydroxybenzoic acid (DHBA), cysteine and hydroxyhistamine via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes encoding anguibactin biosynthetic proteins are harbored by the pJM1 plasmid. In this work we report the identification of a homologue of the plasmid-encoded angB on the chromosome of strain 775. The product of both genes harbor an isochorismate lyase (ICL) domain that converts isochorismic acid to 2,3-dihydro-2,3-dihydroxybenzoic acid, one of the steps of DHBA synthesis. We show in this work that both ICL domains are functional in the production of DHBA in V. anguillarum as well as in E. coli. Substitution by alanine of the aspartic acid residue in the active site of both ICL domains completely abolishes their isochorismate lyase activity in vivo. The two proteins also carry an aryl carrier protein (ArCP) domain. In contrast with the ICL domains only the plasmid encoded ArCP can participate in anguibactin production as determined by complementation analyses and site-directed mutagenesis in the active site of the plasmid encoded protein, S248A. The site-directed mutants, D37A in the ICL domain and S248A in the ArCP domain of the plasmid encoded AngB were also tested in vitro and clearly show the importance of each residue for the domain function and that each domain operates independently.
The importance of RT-qPCR primer design for the detection of siRNA-mediated mRNA silencing
<p>Abstract</p> <p>Background</p> <p>The use of RNAi to analyse gene function <it>in vitro </it>is now widely applied in biological research. However, several difficulties are associated with its use <it>in vivo</it>, mainly relating to inefficient delivery and non-specific effects of short RNA duplexes in animal models. The latter can lead to false positive results when real-time RT-qPCR alone is used to measure target mRNA knockdown.</p> <p>Findings</p> <p>We observed that detection of an apparent siRNA-mediated knockdown <it>in vivo </it>was dependent on the primers used for real-time RT-qPCR measurement of the target mRNA. Two siRNAs specific for <it>RRM1 </it>with equivalent activity <it>in vitro </it>were administered to A549 xenografts via intratumoural injection. In each case, apparent knockdown of <it>RRM1 </it>mRNA was observed only when the primer pair used in RT-qPCR flanked the siRNA cleavage site. This false-positive result was found to result from co-purified siRNA interfering with both reverse transcription and qPCR.</p> <p>Conclusions</p> <p>Our data suggest that using primers flanking the siRNA-mediated cleavage site in RT-qPCR-based measurements of mRNA knockdown <it>in vivo </it>can lead to false positive results. This is particularly relevant where high concentrations of siRNA are introduced, particularly via intratumoural injection, as the siRNA may be co-purified with the RNA and interfere with downstream enzymatic steps. Based on these results, using primers flanking the siRNA target site should be avoided when measuring knockdown of target mRNA by real-time RT-qPCR.</p
Evaluation of efalizumab using safe psoriasis control
BACKGROUND: Safe Psoriasis Control (SPC) is an important comprehensive measure that is validated for the assessment of benefit:risk of psoriasis treatments, combining efficacy, quality of life, and safety measures. The objective of this analysis was to assess the benefit:risk of efalizumab, a novel biologic agent indicated for the treatment of moderate-to-severe plaque psoriasis, by applying the SPC to data from randomized, placebo-controlled clinical studies of efalizumab. METHODS: SPC was applied to week 12 data from four placebo-controlled, Phase III studies: three retrospective and one prospective, the latter including a cohort of "high-need" patients for whom existing therapies were inadequate or unsuitable. RESULTS: In the retrospective analysis, 39.4% of patients achieved SPC after 12 weeks of treatment with efalizumab, compared with 10.4% for placebo. In the prospective analysis, 34.3% of patients achieved SPC after 12 weeks of treatment with efalizumab, compared with 7.3% on placebo. Among high-need patients, 33.0% achieved SPC, compared with 3.4% on placebo. CONCLUSION: Efalizumab has a favorable benefit:risk profile using the comprehensive outcome measure SPC
Proposal for a method to estimate nutrient shock effects in bacteria
Plating methods are still the golden standard in microbiology; however, some studies have shown that these techniques can underestimate the microbial concentrations and diversity. A nutrient shock is one of the mechanisms proposed to explain this phenomenon. In this study, a tentative method to assess nutrient shock effects was tested. Findings To estimate the extent of nutrient shock effects, two strains isolated from tap water (Sphingomonas capsulata and Methylobacterium sp.) and two culture collection strains (E. coli CECT 434 and Pseudomonas fluorescens ATCC 13525) were exposed both to low and high nutrient conditions for different times and then placed in low nutrient medium (R2A) and rich nutrient medium (TSA). The average improvement (A.I.) of recovery between R2A and TSA for the different times was calculated to more simply assess the difference obtained in culturability between each medium. As expected, A.I. was higher when cells were plated after the exposition to water than when they were recovered from high-nutrient medium showing the existence of a nutrient shock for the diverse bacteria used. S. capsulata was the species most affected by this phenomenon. This work provides a method to consistently determine the extent of nutrient shock effects on different microorganisms and hence quantify the ability of each species to deal with sudden increases in substrate concentration. <br/
A Comprehensive Analysis of Electric Dipole Moment Constraints on CP-violating Phases in the MSSM
We analyze the constraints placed on individual, flavor diagonal CP-violating
phases in the minimal supersymmetric extension of the Standard Model (MSSM) by
current experimental bounds on the electric dipole moments (EDMs) of the
neutron, Thallium, and Mercury atoms. We identify the four CP-violating phases
that are individually highly constrained by current EDM bounds, and we explore
how these phases and correlations among them are constrained by current EDM
limits. We also analyze the prospective implications of the next generation of
EDM experiments. We point out that all other CP-violating phases in the MSSM
are not nearly as tightly constrained by limits on the size of EDMs. We
emphasize that a rich set of phenomenological consequences is potentially
associated with these generically large EDM-allowed phases, ranging from B
physics, electroweak baryogenesis, and signals of CP-violation at the CERN
Large Hadron Collider and at future linear colliders. Our numerical study takes
into account the complete set of contributions from one- and two-loop EDMs of
the electron and quarks, one- and two-loop Chromo-EDMs of quarks, the Weinberg
3-gluon operator, and dominant 4-fermion CP-odd operator contributions,
including contributions which are both included and not included yet in the
CPsuperH2.0 package. We also introduce an open-source numerical package, 2LEDM,
which provides the complete set of two-loop electroweak diagrams contributing
to the electric dipole moments of leptons and quarks.Comment: 23 pages, 11 figures; v2: references added, minor change
- …