2 research outputs found

    Perspectives on the Feasibility of Using Enzymes for Pharmaceutical Removal in Wastewater

    No full text
    This particular chapter spotlights the growing environmental concerns and hazardous consequences of numerous organic contaminants so-called emerging contaminants (ECs). These ECs are being detected, though in different quantities, in different environmental matrices and wastewater treatment systems. With ever-increasing awareness, people are now more concerned about the wide-spread distribution of pharmaceutically related active compounds in water matrices. In turn, the free flow of ECs in water matrices poses notable adverse effects on human, aquatic animals, and naturally occurring plants, even at very small concentrations. Due to inadequacies and ineffectiveness of, in practice, physical and chemical-based remediation processes, robust treatment approaches, such as microorganisms and their novel enzyme-based degradation/removal of ECs, are of supreme interest. This chapter focuses on various pharmaceutically related ECs and their efficient mitigation from water matrices. Following a brief introduction, the focus is given to two main treatment approaches, i.e., (1) remediation of pharmaceutically active compounds by crude (pristine) and purified enzymes (i.e., lignin peroxidase, manganese peroxidase, soybean peroxidase, horseradish peroxidase, and laccases) and (2) immobilized enzyme-assisted degradation of pharmaceutically active compounds.Peer reviewe
    corecore