4,789 research outputs found

    A regulatory code for neurogenic gene expression in the Drosophila embryo

    Get PDF
    Bioinformatics methods have identified enhancers that mediate restricted expression in the Drosophila embryo. However, only a small fraction of the predicted enhancers actually work when tested in vivo. In the present study, co-regulated neurogenic enhancers that are activated by intermediate levels of the Dorsal regulatory gradient are shown to contain several shared sequence motifs. These motifs permitted the identification of new neurogenic enhancers with high precision: five out of seven predicted enhancers direct restricted expression within ventral regions of the neurogenic ectoderm. Mutations in some of the shared motifs disrupt enhancer function, and evidence is presented that the Twist and Su(H) regulatory proteins are essential for the specification of the ventral neurogenic ectoderm prior to gastrulation. The regulatory model of neurogenic gene expression defined in this study permitted the identification of a neurogenic enhancer in the distant Anopheles genome. We discuss the prospects for deciphering regulatory codes that link primary DNA sequence information with predicted patterns of gene expression

    A microtiter plate-based quantitative method to monitor the growth rate of dermatophytes and test antifungal activity

    Get PDF
    Dermatophytosis is one of the most common superficial fungal infections, which is mainly caused by filamentous fungi such as Trichophyton species. A challenging aspect in dermatophyte research is the lack of a straightforward method to measure the rate of growth, in particular when growing dermatophytes in small volumes such as in microtitre plates. However, one characteristic of dermatophytes is their ability to produce compounds such as ammonia that make the growth medium more alkaline. The objective of this study was to test whether the change in pH in a liquid medium, colourimetrically established using the indicator phenol red, was linearly and directly proportional to the growth rate for Trichophyton rubrum and Trichophyton interdigitale. The changes in the colour determined by the phenol-red based assay showed a good correlation with the amount of fungal biomass over an incubation period of 24-120 h. The functionality of the phenol red assay was also validated in experiments on the growth of T. rubrum in the presence of antifungals. The changes in colour showed a clear dose-response relationship compounds and enabled determination of the minimum inhibitory concentration. The phenol red assay is thus a simple and straightforward assay to monitor the rate of growth of Trichophyton spp. and test antifungal activit

    Evaluation of an explanted porcine skin model to investigate infection with the dermatophyte Trichophyton rubrum.

    Get PDF
    Dermatophytosis is a fungal infection of skin, hair and nails, and the most frequently found causative agent is Trichophyton rubrum. The disease is very common and often recurring, and it is therefore difficult to eradicate. To develop and test novel treatments, infection models that are representative of the infection process are desirable. Several infection models have been developed, including the use of cultured cells, isolated corneocytes, explanted human skin or reconstituted human epidermis. However, these have various disadvantages, ranging from not being an accurate reflection of the site of infection, as is the case with, for example, cultured cells, to being difficult to scale up or having ethical issues (e.g., explanted human skin). We therefore sought to develop an infection model using explanted porcine skin, which is low cost and ethically neutral. We show that in our model, fungal growth is dependent on the presence of skin, and adherence of conidia is time-dependent with maximum adherence observed after ~ 2 h. Scanning electron microscopy suggested the production of fibril-like material that links conidia to each other and to skin. Prolonged incubation of infected skin leads to luxurious growth and invasion of the dermis, which is not surprising as the skin is not maintained in conditions to keep the tissue alive, and therefore is likely to lack an active immune system that would limit fungal growth. Therefore, the model developed seems useful to study the early stages of infection. Furthermore, we demonstrate that the model can be used to test novel treatment regimens for tinea infections

    The K"ahler-Ricci flow with Log Canonical Singularities

    Full text link
    We establish the existence of the K"ahler-Ricci flow on projective varieties with log canonical singularities. This generalizes some of the existence results of Song-Tian \cite{ST3} in case of projective varieties with klt singularities. We also prove that the normalized K"ahler-Ricci flow will converge to the \ka-Einstein metric with negative Ricci curvature on semi-log canonical models in the sense of currents. Finally we also construct K"ahler-Ricci flow solutions performing divisorial contractions and flips with log canonical singularities

    Applying Theories of Particle Packing and Rheology to Concrete for Sustainable Development

    Get PDF
    Concrete is one of the most important construction materials. However, it is not so compatible with the demands of sustainable development because manufacturing of cement generates a large amount of carbon dioxide and therefore cement consumption produces a huge carbon footprint. Currently, the cement consumption is generally lowered by adding supplementary cementitious materials to replace part of the cement. Nonetheless, in order to maintain performance, there is a limit to such cement replacement by supplementary cementitious materials. To further reduce the cement consumption, the total cementitious materials content has to be reduced. This requires the packing density of the aggregate particles to be maximized so that the amount of voids in the bulk volume of aggregate to be filled with cement paste could be minimized and the surface area of the aggregate particles to be minimized so that the amount of cement paste needed to form paste films coating the surfaces of aggregate particle for rheological performance could be minimized. Such optimization is not straightforward and modern concrete science based on particuology is needed. Herein, a number of new theories regarding particle packing and rheology of concrete, which are transforming conventional concrete technology into modern concrete science, are presented. These theories would help to develop a more scientific and systematic concrete mix design method for the production of high-performance concrete with minimum cement consumption

    Capacity Estimation for Vehicle-to-Grid Frequency Regulation Services with Smart Charging Mechanism

    Get PDF
    Due to various green initiatives, renewable energy will be massively incorporated into the future smart grid. However, the intermittency of the renewables may result in power imbalance, thus adversely affecting the stability of a power system. Frequency regulation may be used to maintain the power balance at all times. As electric vehicles (EVs) become popular, they may be connected to the grid to form a vehicle-to-grid (V2G) system. An aggregation of EVs can be coordinated to provide frequency regulation services. However, V2G is a dynamic system where the participating EVs come and go independently. Thus it is not easy to estimate the regulation capacities for V2G. In a preliminary study, we modeled an aggregation of EVs with a queueing network, whose structure allows us to estimate the capacities for regulation-up and regulation-down, separately. The estimated capacities from the V2G system can be used for establishing a regulation contract between an aggregator and the grid operator, and facilitating a new business model for V2G. In this paper, we extend our previous development by designing a smart charging mechanism which can adapt to given characteristics of the EVs and make the performance of the actual system follow the analytical model.Comment: 11 pages, Accepted for publication in IEEE Transactions on Smart Gri
    corecore