11 research outputs found

    Detection of Behavioral Malware in Delay Tolerant Networks

    Get PDF
    Disruption-tolerant networking has gained currency in the United States due to support from DARPA, which has funded many DTN projects. Disruption may occur because of the limits of wireless radio range, sparsity of mobile nodes, energy resources, attack, and noise. The delay-tolerant-network (DTN) model is becoming a viable communication alternative to the traditional infrastructural model for modern mobile consumer electronics equipped with short-range communication technologies such as Bluetooth, NFC, and Wi-Fi Direct. Proximity malware is a class of malware that exploits the opportunistic contacts and distributed nature of DTNs for propagation. Behavioral characterization of malware is an effective alternative to pattern matching in detecting malware, especially when dealing with polymorphic or obfuscated malware. In this paper, we first propose a general behavioral characterization of proximity malware which based on Naive Bayesian model, which has been successfully applied in non-DTN settings such as filtering email spams and detecting bonnets. We identify two unique challenges for extending Bayesian malware detection to DTNs (“insufficient evidence vs. evidence collection risk” and “filtering false evidence sequentially and distributedly”), and propose a simple yet effective method, look-ahead, to address the challenges. Furthermore, we propose two extensions to look-ahead, dogmatic filtering and adaptive look-ahead, to address the challenge of “malicious nodes sharing false evidence”. Real mobile network traces are used to verify the effectiveness of the proposed methods

    Some studies on cutting force and temperature in machining Ti-6Al-4V alloy using regression analysis and ANOVA

    No full text
    The present work deals with the cutting forces and cutting temperature produced during turning of titanium alloy Ti-6Al-4V with PVD TiN coated tungsten carbide inserts under dry environment. The 1st order mathematical models are developed using multiple regression analysis and optimized the process parameters using contour plots. The model presented high determination coefficient (R2 = 0.964 and 0.989 explaining 96.4 % and 98.9 % of the variability in the cutting force and cutting temperature, which indicates the goodness of fit for the model and high significance of the model. The developed mathematical model correlates the relationship of the cutting force and temperature with the process parameters with good degree of approximation. From the contour plots, the optimal parametric combination for lowest cutting force is v 3 (75 m/min) – f 1 (0.25 mm/rev). Similarly, the optimal parametric combination for minimum temperature is v 1 (45 m/min) – f 1 (0.25 mm/rev). Cutting speed is found to be the most significance parameter on cutting forces followed by feed. Similarly, for cutting temperature, feed is found to be the most influencing parameter followed by cutting speed
    corecore