Detection of Behavioral Malware in Delay Tolerant Networks

Abstract

Disruption-tolerant networking has gained currency in the United States due to support from DARPA, which has funded many DTN projects. Disruption may occur because of the limits of wireless radio range, sparsity of mobile nodes, energy resources, attack, and noise. The delay-tolerant-network (DTN) model is becoming a viable communication alternative to the traditional infrastructural model for modern mobile consumer electronics equipped with short-range communication technologies such as Bluetooth, NFC, and Wi-Fi Direct. Proximity malware is a class of malware that exploits the opportunistic contacts and distributed nature of DTNs for propagation. Behavioral characterization of malware is an effective alternative to pattern matching in detecting malware, especially when dealing with polymorphic or obfuscated malware. In this paper, we first propose a general behavioral characterization of proximity malware which based on Naive Bayesian model, which has been successfully applied in non-DTN settings such as filtering email spams and detecting bonnets. We identify two unique challenges for extending Bayesian malware detection to DTNs (“insufficient evidence vs. evidence collection risk” and “filtering false evidence sequentially and distributedly”), and propose a simple yet effective method, look-ahead, to address the challenges. Furthermore, we propose two extensions to look-ahead, dogmatic filtering and adaptive look-ahead, to address the challenge of “malicious nodes sharing false evidence”. Real mobile network traces are used to verify the effectiveness of the proposed methods

    Similar works