70 research outputs found

    ZODIACAL EXOPLANETS in TIME (ZEIT). IV. SEVEN TRANSITING PLANETS in the PRAESEPE CLUSTER

    Get PDF
    Open clusters and young stellar associations are attractive sites to search for planets and to test theories of planet formation, migration, and evolution. We present our search for, and characterization of, transiting planets in the 800 Myr old Praesepe (Beehive, M44) Cluster from K2 light curves. We identify seven planet candidates, six of which we statistically validate to be real planets, the last of which requires more data. For each host star, we obtain high-resolution NIR spectra to measure its projected rotational broadening and radial velocity, the latter of which we use to confirm cluster membership. We combine low-resolution spectra with the known cluster distance and metallicity to provide precise temperatures, masses, radii, and luminosities for the host stars. Combining our measurements of rotational broadening, rotation periods, and our derived stellar radii, we show that all planetary orbits are consistent with alignment to their host star's rotation. We fit the K2 light curves, including priors on stellar density to put constraints on the planetary eccentricities, all of which are consistent with zero. The difference between the number of planets found in Praesepe and Hyades (8 planets, Myr) and a similar data set for Pleiades (0 planets, ≃125 Myr) suggests a trend with age, but may be due to incompleteness of current search pipelines for younger, faster-rotating stars. We see increasing evidence that some planets continue to lose atmosphere past 800 Myr, as now two planets at this age have radii significantly larger than their older counterparts from Kepler

    Zodiacal Exoplanets in Time (ZEIT). VI. A Three-planet System in the Hyades Cluster Including an Earth-sized Planet

    Get PDF
    Planets in young clusters are powerful probes of the evolution of planetary systems. Here we report the discovery of three planets transiting EPIC 247589423, a late-K dwarf in the Hyades (≃800 Myr) cluster, and robust detection limits for additional planets in the system. The planets were identified from their K2 light curves as part of our survey of young clusters and star-forming regions. The smallest planet has a radius comparable to Earth (), making it one of the few Earth-sized planets with a known, young age. The two larger planets are likely a mini-Neptune and a super-Earth, with radii of 291+0.11-0.10and 1.45+0.11-0.08 , respectively. The predicted radial velocity signals from these planets are between 0.4 and 2 m s-1, achievable with modern precision RV spectrographs. Because the target star is bright (V = 11.2) and has relatively low-amplitude stellar variability for a young star (2-6 mmag), EPIC 247589423 hosts the best known planets in a young open cluster for precise radial velocity follow-up, enabling a robust test of earlier claims that young planets are less dense than their older counterparts

    The igrins yso survey. i. stellar parameters of pre-main-sequence stars in taurus- auriga

    Get PDF
    We present fundamental parameters for 110 canonical K- and M-type (1.3-0.13Me) Taurus-Auriga young stellar objects (YSOs). The analysis produces a simultaneous determination of effective temperature (Teff), surface gravity (log g), magnetic-field strength (B), and projected rotational velocity (v sin i). Our method employed synthetic spectra and high-resolution (R ∼ 45,000) near-infrared spectra taken with the Immersion GRating INfrared Spectrometer (IGRINS) to fit specific K-band spectral regions most sensitive to those parameters. The use of these high-resolution spectra reduces the influence of distance uncertainties, reddening, and non-photospheric continuum emission on the parameter determinations. The median total (fit + systematic) uncertainties were 170 K, 0.28 dex, 0.60 kG, 2.5 km s-1 for Teff, log g, B, and v sin i, respectively. We determined B for 41 Taurus YSOs (upper limits for the remainder) and find systematic offsets (lower Teff, higher log g and v sin i) in parameters when B is measurable but not considered in the fit. The average log g for the Class II and Class III objects differs by 0.23 ± 0.05 dex, which is consistent with Class III objects being the more evolved members of the star-forming region. However, the dispersion in log g is greater than the uncertainties, which highlights how the YSO classification correlates with age (log g), yet there are exceptionally young (lower log g) Class III YSOs and relatively old (higher log g) Class II YSOs with unexplained evolutionary histories. The spectra from this work are provided in an online repository along with TW Hydrae Association comparison objects and the model grid used in our analysis

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
    corecore