11 research outputs found
Absorption Line Studies in the Halo
Significant progress has been made over the last few years to explore the
gaseous halo of the Milky Way by way of absorption spectroscopy. I review
recent results on absorption line studies in the halo using various
instruments, such as the Far Ultraviolet Spectroscopic Explorer, the Space
Telescope Imaging Spectrograph, and others. The new studies imply that the
infall of low-metallicity gas, the interaction with the Magellanic Clouds, and
the Galactic Fountain are responsible for the phenomenon of the intermediate-
and high-velocity clouds in the halo. New measurements of highly-ionized gas in
the vicinity of the Milky Way indicate that these clouds are embedded in a
corona of hot gas that extends deep into the intergalactic space.Comment: 7 pages, 1 figure; Invited review at the conference "How does the
Galaxy work ?", Granada/Spain, June 200
FUV and X-ray absorption in the Warm-Hot Intergalactic Medium
The Warm-Hot Intergalactic Medium (WHIM) arises from shock-heated gas
collapsing in large-scale filaments and probably harbours a substantial
fraction of the baryons in the local Universe. Absorption-line measurements in
the ultraviolet (UV) and in the X-ray band currently represent the best method
to study the WHIM at low redshifts. We here describe the physical properties of
the WHIM and the concepts behind WHIM absorption line measurements of H I and
high ions such as O VI, O VII, and O VIII in the far-ultraviolet and X-ray
band. We review results of recent WHIM absorption line studies carried out with
UV and X-ray satellites such as FUSE, HST, Chandra, and XMM-Newton and discuss
their implications for our knowledge of the WHIM.Comment: 26 pages, 9 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 3; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
The UV Legacy Library of Young Stars as essential standards (ULLYSES) large Director’s Discretionary program with Hubble. I. goals, design, and initial results
Specifically selected to leverage the unique ultraviolet capabilities of the Hubble Space Telescope, the Hubble Ultraviolet Legacy Library of Young Stars as Essential Standards (ULLYSES) is a Director's Discretionary program of approximately 1000 orbits—the largest ever executed—that produced a UV spectroscopic library of O and B stars in nearby low-metallicity galaxies and accreting low-mass stars in the Milky Way. Observations from ULLYSES combined with archival spectra uniformly sample the fundamental astrophysical parameter space for each mass regime, including spectral type, luminosity class, and metallicity for massive stars, and the mass, age, and disk accretion rate for low-mass stars. The ULLYSES spectral library of massive stars will be critical to characterize how massive stars evolve at different metallicities; to advance our understanding of the production of ionizing photons, and thus of galaxy evolution and the re-ionization of the Universe; and to provide the templates necessary for the synthesis of integrated stellar populations. The massive-star spectra are also transforming our understanding of the interstellar and circumgalactic media of low-metallicity galaxies. On the low-mass end, UV spectra of T Tauri stars contain a plethora of diagnostics of accretion, winds, and the warm disk surface. These diagnostics are crucial for evaluating disk evolution and provide important input to assess atmospheric escape of planets and to interpret powerful probes of disk chemistry, as observed with the Atacama Large Millimeter Array and the James Webb Space Telescope. In this paper, we motivate the design of the program, describe the observing strategy and target selection, and present initial results
HST/STIS observations of the high-velocity interstellar cloud HVC 291.2-41.2+80: a warm, mainly ionized high-velocity cloud
LS 4825: A blue supergiant on the far side of the galaxy
We present high-resolution spectroscopic observations of LS 4825, a V = 12 B-type star in the Galactic center direction. On the basis of its stellar and interstellar spectra, we infer that it is likely to be a young supergiant at a distance of 21 +/- 5 kpc, and hence lying on the far side of the 'Galaxy. Adopting this hypothesis, a differential abundance analysis shows LS 4825 to have a chemical composition that is consistent with local B-type supergiants. These observations therefore represent the first detailed investigation of a star on the far side of the Galactic center. We trace multiple interstellar components in Ca II K and Na I D spectra, with velocities -206 less than or equal to v(lst) less than or equal to +93 km s(-1). We consider the likely origin of this gas and find that some components appear to trace matter lying close to the Galactic center. We discuss the possible use of such sight lines in furthering our understanding both of the nature of gas around the Galactic center and of the abundance gradient of the Galaxy
