164 research outputs found

    Vafa-Witten Estimates for Compact Symmetric Spaces

    Full text link
    We give an optimal upper bound for the first eigenvalue of the untwisted Dirac operator on a compact symmetric space G/H with rk G-rk H\le 1 with respect to arbitrary Riemannian metrics. We also prove a rigidity statement.Comment: LaTeX, 11 pages. V2: Rigidity statement added, minor changes. To appea

    Complete characterization of convergence to equilibrium for an inelastic Kac model

    Full text link
    Pulvirenti and Toscani introduced an equation which extends the Kac caricature of a Maxwellian gas to inelastic particles. We show that the probability distribution, solution of the relative Cauchy problem, converges weakly to a probability distribution if and only if the symmetrized initial distribution belongs to the standard domain of attraction of a symmetric stable law, whose index α\alpha is determined by the so-called degree of inelasticity, p>0p>0, of the particles: α=21+p\alpha=\frac{2}{1+p}. This result is then used: (1) To state that the class of all stationary solutions coincides with that of all symmetric stable laws with index α\alpha. (2) To determine the solution of a well-known stochastic functional equation in the absence of extra-conditions usually adopted

    Yangians, Integrable Quantum Systems and Dorey's rule

    Get PDF
    We study tensor products of fundamental representations of Yangians and show that the fundamental quotients of such tensor products are given by Dorey's rule.Comment: We have made corrections to the results for the Yangians associated to the non--simply laced algebra

    Dorey's Rule and the q-Characters of Simply-Laced Quantum Affine Algebras

    Get PDF
    Let Uq(ghat) be the quantum affine algebra associated to a simply-laced simple Lie algebra g. We examine the relationship between Dorey's rule, which is a geometrical statement about Coxeter orbits of g-weights, and the structure of q-characters of fundamental representations V_{i,a} of Uq(ghat). In particular, we prove, without recourse to the ADE classification, that the rule provides a necessary and sufficient condition for the monomial 1 to appear in the q-character of a three-fold tensor product V_{i,a} x V_{j,b} x V_{k,c}.Comment: 30 pages, latex; v2, to appear in Communications in Mathematical Physic

    Meixner class of non-commutative generalized stochastic processes with freely independent values I. A characterization

    Full text link
    Let TT be an underlying space with a non-atomic measure σ\sigma on it (e.g. T=RdT=\mathbb R^d and σ\sigma is the Lebesgue measure). We introduce and study a class of non-commutative generalized stochastic processes, indexed by points of TT, with freely independent values. Such a process (field), ω=ω(t)\omega=\omega(t), tTt\in T, is given a rigorous meaning through smearing out with test functions on TT, with Tσ(dt)f(t)ω(t)\int_T \sigma(dt)f(t)\omega(t) being a (bounded) linear operator in a full Fock space. We define a set CP\mathbf{CP} of all continuous polynomials of ω\omega, and then define a con-commutative L2L^2-space L2(τ)L^2(\tau) by taking the closure of CP\mathbf{CP} in the norm PL2(τ):=PΩ\|P\|_{L^2(\tau)}:=\|P\Omega\|, where Ω\Omega is the vacuum in the Fock space. Through procedure of orthogonalization of polynomials, we construct a unitary isomorphism between L2(τ)L^2(\tau) and a (Fock-space-type) Hilbert space F=Rn=1L2(Tn,γn)\mathbb F=\mathbb R\oplus\bigoplus_{n=1}^\infty L^2(T^n,\gamma_n), with explicitly given measures γn\gamma_n. We identify the Meixner class as those processes for which the procedure of orthogonalization leaves the set CP\mathbf {CP} invariant. (Note that, in the general case, the projection of a continuous monomial of oder nn onto the nn-th chaos need not remain a continuous polynomial.) Each element of the Meixner class is characterized by two continuous functions λ\lambda and η0\eta\ge0 on TT, such that, in the F\mathbb F space, ω\omega has representation \omega(t)=\di_t^\dag+\lambda(t)\di_t^\dag\di_t+\di_t+\eta(t)\di_t^\dag\di^2_t, where \di_t^\dag and \di_t are the usual creation and annihilation operators at point tt

    Bronchop Neumonia Detection Using Novel Multilevel Deep Neural Network Schema

    Get PDF
    Pneumonia is a dangerous disease that can occur in one or both lungs and is usually caused by a virus, fungus or bacteria. Respiratory syncytial virus (RSV) is the most common cause of pneumonia in children. With the development of pneumonia, it can be divided into four stages: congestion, red liver, gray liver and regression. In our work, we employ the most powerful tools and techniques such as VGG16, an object recognition and classification algorithm that can classify 1000 images in 1000 different groups with 92.7% accuracy. It is one of the popular algorithms designed for image classification and simple to use by means of transfer learning. Transfer learning (TL) is a technique in deep learning that spotlight on pre-learning the neural network and storing the knowledge gained while solving a problem and applying it to new and different information. In our work, the information gained by learning about 1000 different groups on Image Net can be used and strive to identify diseases

    Time-orthogonal unitary dilations and noncommutative Feynman-Kac formulae

    Full text link
    An analysis of Feynman-Kac formulae reveals that, typically, the unperturbed semigroup is expressed as the expectation of a random unitary evolution and the perturbed semigroup is the expectation of a perturbation of this evolution in which the latter perturbation is effected by a cocycle with certain covariance properties with respect to the group of translations and reflections of the line. We consider generalisations of the classical commutative formalism in which the probabilistic properties are described in terms of non-commutative probability theory based on von Neumann algebras. Examples of this type are generated, by means of second quantisation, from a unitary dilation of a given self-adjoint contraction semigroup, called the time orthogonal unitary dilation, whose key feature is that the dilation operators corresponding to disjoint time intervals act nontrivially only in mutually orthogonal supplementary Hilbert spaces.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46525/1/220_2005_Article_BF01976044.pd

    Random repeated quantum interactions and random invariant states

    Full text link
    We consider a generalized model of repeated quantum interactions, where a system H\mathcal{H} is interacting in a random way with a sequence of independent quantum systems Kn,n1\mathcal{K}_n, n \geq 1. Two types of randomness are studied in detail. One is provided by considering Haar-distributed unitaries to describe each interaction between H\mathcal{H} and Kn\mathcal{K}_n. The other involves random quantum states describing each copy Kn\mathcal{K}_n. In the limit of a large number of interactions, we present convergence results for the asymptotic state of H\mathcal{H}. This is achieved by studying spectral properties of (random) quantum channels which guarantee the existence of unique invariant states. Finally this allows to introduce a new physically motivated ensemble of random density matrices called the \emph{asymptotic induced ensemble}

    Diagonal Representation for a Generic Matrix Valued Quantum Hamiltonian

    Full text link
    A general method to derive the diagonal representation for a generic matrix valued quantum Hamiltonian is proposed. In this approach new mathematical objects like non-commuting operators evolving with the Planck constant promoted as a running variable are introduced. This method leads to a formal compact expression for the diagonal Hamiltonian which can be expanded in a power series of the Planck constant. In particular, we provide an explicit expression for the diagonal representation of a generic Hamiltonian to the second order in the Planck constant. This last result is applied, as a physical illustration, to Dirac electrons and neutrinos in external fields.Comment: Significant revision, typos corrected and references adde

    Probabilistic frames: An overview

    Full text link
    Finite frames can be viewed as mass points distributed in NN-dimensional Euclidean space. As such they form a subclass of a larger and rich class of probability measures that we call probabilistic frames. We derive the basic properties of probabilistic frames, and we characterize one of their subclasses in terms of minimizers of some appropriate potential function. In addition, we survey a range of areas where probabilistic frames, albeit, under different names, appear. These areas include directional statistics, the geometry of convex bodies, and the theory of t-designs
    corecore