10 research outputs found

    Influence of Grain Boundary Character on Creep Void Formation in Alloy 617

    Get PDF
    Alloy 617, a high temperature creep-resistant, nickel-based alloy, is being considered for the primary heat exchanger for the Next Generation Nuclear Plant (NGNP) which will operate at temperatures exceeding 760oC. Orientation imaging microscopy (OIM) is used to characterize the grain boundaries in the vicinity of creep voids that develop during high temperature creep tests (800-1000oC at creep stresses ranging from 20-85 MPa) terminated at creep strains ranging from 5-40%. Observations using optical microscopy indicate creep rate does not significantly influence the creep void fraction at a given creep strain. Preliminary analysis of the OIM data indicates voids tend to form on grain boundaries parallel, perpendicular or 45o to the tensile axis, while few voids are found at intermediate inclinations to the tensile axis. Random grain boundaries intersect most voids while CSL-related grain boundaries did not appear to be consistently associated with void development

    The creep of thin beams under small bending moments

    No full text

    Creep at low stresses: an evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms

    No full text
    High-temperature creep experiments often reveal a transition at very low stresses to a region where the stress exponent is reduced to a value lying typically in the range of ~1 to 2. This region is generally associated with the occurrence of a new creep mechanism, such as grain-boundary sliding, diffusion creep, and/or Harper–Dorn creep. Several recent reports have suggested that diffusion creep and Harper–Dorn creep may not be viable creep mechanisms. This article examines these two processes and demonstrates that there is good evidence supporting the occurrence of both creep mechanisms under at least some experimental conditions

    Denuded zones, diffusional creep, and grain boundary sliding

    No full text
    The appearance of denuded zones following low stress creep in particle-containing crystalline materials is both a microstructural prediction and observation often cited as irrefutable evidence for the Nabarro-Herring (N-H) mechanism of diffusional creep. The denuded zones are predicted to be at grain boundaries that are orthogonal to the direction of the applied stress. Furthermore, their dimensions should account for the accumulated plastic flow. In the present article, the evidence for such denuded zones is critically examined. These zones have been observed during creep of magnesium, aluminum, and nickel-base alloys. The investigation casts serious doubts on the apparently compelling evidence for the link between denuded zones and diffusional creep. Specifically, denuded zones are clearly observed under conditions that are explicitly not diffusional creep. Additionally, the denuded zones are often found in directions that are not orthogonal to the applied stress. Other mechanisms that can account for the observations of denuded zones are discussed. It is proposed that grain boundary sliding accommodated by slip is the rate-controlling process in the stress range where denuded zones have been observed. It is likely that the denuded zones are created by dissolution of precipitates at grain boundaries that are simultaneously sliding and migrating during creep.Peer reviewe
    corecore