3 research outputs found
Sodium atoms and clusters on graphite: a density functional study
Sodium atoms and clusters (N<5) on graphite (0001) are studied using density
functional theory, pseudopotentials and periodic boundary conditions. A single
Na atom is observed to bind at a hollow site 2.45 A above the surface with an
adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates
a flat potential energy surface. Increased Na coverage results in a weak
adsorbate-substrate interaction, which is evident in the larger separation from
the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The
binding is weak for Na_2, which has a full valence electron shell. The presence
of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and
both Na_4 and Na_5 are distorted from planarity. The calculated formation
energies suggest that clustering of atoms is energetically favorable, and that
the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite
than in the gas phase. Analysis of the lateral charge density distributions of
Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure
Intercalation of graphite and hexagonal boron nitride by lithium
Although graphite and hexagonal form of BN (h-BN) are isoelectronic and have very similar lattice structures, it has been very difficult to
intercalate h-BN while there are hundreds of intercalation compounds
of graphite. We have done a comparative first principles investigation of lithium intercalation of graphite and hexagonal boron nitride to provide clues for the difficulty of h-BN intercalation. In
particular lattice structure, cohesive energy, formation enthalpy,
charge transfer and electronic structure of both intercalation
compounds are calculated in the density functional theory framework
with local density approximation to the
exchange-correlation energy. The calculated formation enthalpy
of the considered forms of Li intercalated h-BN is found to be positive which rules out h-BN intercalation without externally supplied energy. Also, the Li(BN)3 form of Li-intercalated
h-BN is found to have a large electronic density of states at the Fermi level and an interlayer state that crosses Fermi level at the zone center; these properties make it an interesting material to investigate the role of interlayer states in the superconductivity of alkali intercalated layered structures. The most pronounced change in the charge distribution of the intercalated compounds is found to be charge transfer from the planar σ states to the π states