6 research outputs found

    Periodic Travelling Waves in Dimer Granular Chains

    Full text link
    We study bifurcations of periodic travelling waves in granular dimer chains from the anti-continuum limit, when the mass ratio between the light and heavy beads is zero. We show that every limiting periodic wave is uniquely continued with respect to the mass ratio parameter and the periodic waves with the wavelength larger than a certain critical value are spectrally stable. Numerical computations are developed to study how this solution family is continued to the limit of equal mass ratio between the beads, where periodic travelling waves of granular monomer chains exist

    Characteristics of brush plated ZnTe thin films

    No full text
    Zinc telluride thin films were deposited by the brush plating technique at a potential of −0.90 V (SCE) on conducting glass and titanium substrates at different temperatures in the range 30–90◦C. The films were polycrystalline in nature with peaks corresponding to the cubic phase. Direct band gap of 2.30 eV was observed. XPS studiers indicated the formation of ZnTe. Depth profiling studies indicated a uniform distribution of Zn and Te throughout the entire thickness. EDAX measurements were made on the films and it was found that there was a slight excess of Te

    Structural and electrical properties of brush plated ZnTe films

    No full text
    Zinc telluride thin films were deposited by the brush plating technique at a potential of 0.90 V (SCE) on conducting glass and titanium substrates at different temperatures in the range 30–90 C. The films were polycrystalline in nature with peaks corresponding to the cubic phase. Direct band gap of 2.30 eV was observed. XPS studiers indicated the formation of ZnTe. Depth profiling studies indicated a uniform distribution of Zn and Te throughout the entire thickness. EDAX measurements were made on the films and it was found that there was a slight excess of Te. The carrier concentration was found to vary from 1014–1015 cm-3 with increase of substrate temperature. The mobility was found to vary from 5 to 60 cm2 V-1 s-1

    Effective particles and classification of periodic orbits of homogeneous granular chains with no precompression

    Full text link
    peer reviewedWe develop a systematic methodology for classifying the periodic orbits of homogeneous ordered granular chains with no dissipation, under the assumption that all granules oscillate with the same frequency. The analysis is based on the idea of balancing linear momentum for sets of auxiliary models consisting of “effective particles.” The auxiliary models may be defined for any given finite, ordered granular chain composed of n identical granules (beads) that interact with each other through strongly nonlinear Hertzian interaction law. In turn, the auxiliary models may be effectively used for theoretically predicting the total number of periodic orbits and the corresponding amplitude ratios of the granules. Good correspondence between the theoretical models and results of direct numerical simulations is reported. The results presented herein can be used to understand the complex intrinsic dynamics of ordered granular media, and to systematically study the generation of mode localization in these strongly nonlinear systems. The derived analytical models can be utilized to predict the response of the effective particles, and based on that, to predict primary pulse transmission in periodic layered media with granular interfaces. Moreover, our analysis can be extended to the general class of nonlinear chains of particles with smooth interacting potentials and possible separation between particles during the motion
    corecore