9 research outputs found
Recommended from our members
Gamma-ray imaging as a tool for uranium processing plants
Gamma-radiation is frequently used as an analysis and characterization signal to monitor material in the nuclear fuel processing cycle. The selection as a diagnostic is self-evident since the radiation is ubiquitous, characteristic of the isotopes present, and sufficiently penetrating so that measurements may be made remotely. However, save through detector proximity or minimal collimation, the directional nature of the radiation is generally not used in traditional nondestructive assay (NDA) measurements. To demonstrate the additional information available, we used GRIS, the Gamma-Ray Imaging Spectrometer, at the K-25 and Portsmouth gaseous diffusion plants. In this facility, UF{sub 6} gas is enriched in heated equipment and piping which run inside an insulated housing. Occasionally, the process develops uranium deposits due to leakage of wet air or environmental changes within the housing that cause solidification of the process gas. When such deposits occur, traditional NDA techniques frequently require costly and time-consuming entry within the heat shielding to obtain precise information on the deposit unavailable from outside the shielding. In this paper we discuss GRIS, the gamma-ray imaging technique it uses, and present the results of measurements obtained on fuel processing equipment
Recommended from our members
Beam foil spectroscopy of N = 3 to N = 2 transitions in highly stripped heavy ions. Revision 1
The spectroscopy of very highly ionized atoms provides an important testing ground for multi-electron atomic theory. We report preliminary experimental results on the n = 3 ..-->.. 2 spectra of Bi/sup +73/ and A/sup +69/ obtained at the GSI UNILAC accelerator. 19 refs., 4 figs
Recommended from our members
Bragg Crystal Polarimeter for the Spectrum-X-Gamma Mission
We are designing a Bragg crystal polarimeter for the focal plane of the SODART telescope on the Spectrum-X-Gamma mission. A mosaic graphite crystal will be oriented at 45{degree} to the optic axis of the telescope, thereby preferentially reflecting those x-rays which satisfy the Bragg condition and have electric vectors that are perpendicular to the plane defined by the incident and reflected photons. The reflected x-rays will be detected by an imaging proportional counter with the image providing direct x-ray aspect information. The crystal will be {approx}50 {mu}m thick to allow x-rays with energies {ge}4 keV to be transmitted to a lithium block mounted below the graphite. The lithium is used to measure the polarization of these high energy x-rays by exploiting the polarization dependence of Thomson scattering. The development of thin mosaic graphite crystals is discussed and recent reflectivity, transmission, and uniformity measurements are presented. 8 refs., 11 figs., 1 tab