12 research outputs found

    Structuring with anisotropic colloids

    Get PDF
    Structure is an important factor in food. One of the ways to provide structure to foods is by using bubbles and foams. However, they need to be stabilized. One way of doing this is by covering them with microscopic rods. These rods self-assemble at the surface, yielding a stable bubble. The goal of this work is to gain a better understanding into how this self-assembly works using analytical calculations, experiments and simulations

    Structuring with anisotropic colloids

    Get PDF
    Structure is an important factor in food. One of the ways to provide structure to foods is by using bubbles and foams. However, they need to be stabilized. One way of doing this is by covering them with microscopic rods. These rods self-assemble at the surface, yielding a stable bubble. The goal of this work is to gain a better understanding into how this self-assembly works using analytical calculations, experiments and simulations

    Novel and emerging biotechnological crop protection approaches

    No full text
    Traditional breeding or genetically modified organisms (GMOs) have for a long time been the sole approaches to effectively cope with biotic and abiotic stresses and implement the quality traits of crops. However, emerging diseases as well as unpredictable climate changes affecting agriculture over the entire globe force scientists to find alternative solutions required to quickly overcome seasonal crises. In this review, we first focus on cisgenesis and genome editing as challenging biotechnological approaches for breeding crops more tolerant to biotic and abiotic stresses. In addition, we take into consideration a toolbox of new techniques based on applications of RNA interference and epigenome modifications, which can be adopted for improving plant resilience. Recent advances in these biotechnological applications are mainly reported for non‐model plants and woody crops in particular. Indeed, the characterization of RNAi machinery in plants is fundamental to transform available information into biologically or biotechnologically applicable knowledge. Finally, here we discuss how these innovative and environmentally friendly techniques combined with traditional breeding can sustain a modern agriculture and be of potential contribution to climate change mitigation

    Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration

    No full text
    corecore