14 research outputs found

    Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study.

    No full text
    Previous studies have shown an association between elevated concentrations of particulate air pollution and cardiovascular morbidity and mortality. Therefore, the association between daily variation of ultrafine and fine particulate air pollution and cardiac autonomic control measured as heart rate variability (HRV) was studied in a large multicenter study in Amsterdam, the Netherlands, Erfurt, Germany, and Helsinki, Finland. Elderly subjects (n=37 in Amsterdam, n=47 in both Erfurt and Helsinki) with stable coronary artery disease were followed for 6 months with biweekly clinical visits. During the visits, ambulatory electrocardiogram was recorded during a standardized protocol including a 5-min period of paced breathing. Time and frequency domain analyses of HRV were performed. A statistical model was built for each center separately. The mean 24-h particle number concentration (NC) (1,000/cm(3)) of ultrafine particles (diameter 0.01-0.1 microm) was 17.3 in Amsterdam, 21.1 in Erfurt, and 17.0 in Helsinki. The corresponding values for PM2.5 were 20.0, 23.1, and 12.7 microg/m(3). During paced breathing, ultrafine particles, NO(2), and CO were at lags of 0-2 days consistently and significantly associated with decreased low-to-high frequency ratio (LF/HF), a measure of sympathovagal balance. In a pooled analysis across the centers, LF/HF decreased by 13.5% (95% confidence interval: -20.1%, -7.0%) for each 10,000/cm(3) increase in the NC of ultrafine particles (2-day lag). PM2.5 was associated with reduced HF and increased LF/HF in Helsinki, whereas the opposite was true in Erfurt, and in Amsterdam, there were no clear associations between PM2.5 and HRV. The results suggest that the cardiovascular effects of ambient ultrafine and PM2.5 can differ from each other and that their effect may be modified by the characteristics of the exposed subjects and the sources of PM2.5

    Source category-specific PM2.5 and urinary levels of Clara cell protein CC16. The ULTRA study.

    No full text
    INTRODUCTION: We have previously reported that outdoor levels of fine particles (PM(2.5), diamete

    Effects of Particulate Air Pollution on Blood Pressure and Heart Rate in Subjects with Cardiovascular Disease : A Multe-Centre Approach.

    No full text
    Given the hypothesis that air pollution is associated with elevated blood pressure and heart rate, the effect of daily concentrations of air pollution on blood pressure and heart rate was assessed in 131 adults with coronary heart disease in Helsinki, Finland; Erfurt, Germany; and Amsterdam, the Netherlands. Blood pressure was measured by a digital monitor, and heart rate was calculated as beats per minute from an electrocardiogram recording with the patient in supine position. Particle concentrations were measured at central measuring sites. Linear regression was used to model the association between 24-hr mean concentrations of particles and blood pressure and heart rate. Estimates were adjusted for trend, day of week, temperature, barometric pressure, relative humidity, and medication use. Pooled effect estimates showed a small significant decrease in diastolic and systolic blood pressure in association with particulate air pollution; a slight decrease in heart rate was found. Of the three centers, Erfurt revealed the most consistent particle effects. The results do not support findings from previous studies that had shown an increase in blood pressure and heart rate in healthy individuals in association with particles. However, particle effects might differ in cardiac patients because of medication intake and disease status, both affecting the autonomic control of the heart
    corecore