2,026 research outputs found
A three-dimensional multidimensional gas-kinetic scheme for the Navier-Stokes equations under gravitational fields
This paper extends the gas-kinetic scheme for one-dimensional inviscid
shallow water equations (J. Comput. Phys. 178 (2002), pp. 533-562) to
multidimensional gas dynamic equations under gravitational fields. Four
important issues in the construction of a well-balanced scheme for gas dynamic
equations are addressed. First, the inclusion of the gravitational source term
into the flux function is necessary. Second, to achieve second-order accuracy
of a well-balanced scheme, the Chapman-Enskog expansion of the Boltzmann
equation with the inclusion of the external force term is used. Third, to avoid
artificial heating in an isolated system under a gravitational field, the
source term treatment inside each cell has to be evaluated consistently with
the flux evaluation at the cell interface. Fourth, the multidimensional
approach with the inclusion of tangential gradients in two-dimensional and
three-dimensional cases becomes important in order to maintain the accuracy of
the scheme. Many numerical examples are used to validate the above issues,
which include the comparison between the solutions from the current scheme and
the Strang splitting method. The methodology developed in this paper can also
be applied to other systems, such as semi-conductor device simulations under
electric fields.Comment: The name of first author was misspelled as C.T.Tian in the published
paper. 35 pages,9 figure
Sexual violence against women and children in Chinese societies
This article provides a comprehensive overview of the reported patterns of sexual violence against women and children in China. It reviews the prevalence of and risk factors for various types of sexual violence and discusses community knowledge and perceptions of these violent acts. It also critically examines three major problems of sexual violence research in China. First, the diversity of findings and study methods reported by surveys and criminal reports reflects the problems in obtaining accurate figures on the scope of the problem. Second, precautions must be taken in reading studies on Chinese culture-specific risk factors for domestic violence. Third, the study of culture-specific factors should not focus solely on cultural factors in a vacuum but rather, should examine traditional culture in the context of modern societies and consensus international standards of human rights. Recommendations for future research are also discussed. © 2009 Sage Publications.postprin
Global Incidence and mortality of oesophageal cancer and their correlation with socioeconomic indicators temporal patterns and trends in 41 countries
Oesophageal cancers (adenocarcinomas [AC] and squamous cell carcinomas [SCC]) are characterized by high incidence/mortality in many countries. We aimed to delineate its global incidence and mortality, and studied whether socioeconomic development and its incidence rate were correlated. The age-standardized rates (ASRs) of incidence and mortality of this medical condition in 2012 for 184 nations from the GLOBOCAN database; national databases capturing incidence rates, and the WHO mortality database were examined. Their correlations with two indicators of socioeconomic development were evaluated. Joinpoint regression analysis was used to generate trends. The ratio between the ASR of AC and SCC was strongly correlated with HDI (r = 0.535 [men]; r = 0.661 [women]) and GDP (r = 0.594 [men]; r = 0.550 [women], both p < 0.001). Countries that reported the largest reduction in incidence in male included Poland (Average Annual Percent Change [AAPC] = −7.1, 95%C.I. = −12,−1.9) and Singapore (AAPC = −5.8, 95%C.I. = −9.5,−1.9), whereas for women the greatest decline was seen in Singapore (AAPC = −12.3, 95%C.I. = −17.3,−6.9) and China (AAPC = −5.6, 95%C.I. = −7.6,−3.4). The Philippines (AAPC = 4.3, 95%C.I. = 2,6.6) and Bulgaria (AAPC = 2.8, 95%C.I. = 0.5,5.1) had a significant mortality increase in men; whilst Columbia (AAPC = −6.1, 95%C.I. = −7.5,−4.6) and Slovenia (AAPC = −4.6, 95%C.I. = −7.9,−1.3) reported mortality decline in women. These findings inform individuals at increased risk for primary prevention
Higgsino Dark Matter in a SUGRA Model with Nonuniversal Gaugino Masses
We study a specific SUGRA model with nonuniversal gaugino masses as an
alternative to the minimal SUGRA model in the context of supersymmetric dark
matter. The lightest supersymmetric particle in this model comes out to be a
Higgsino dominated instead of a bino dominated lightest neutralino. The thermal
relic density of this Higgsino dark matter is somewhat lower than the
cosmologically favoured range, which means it may be only a subdominant
component of the cold dark matter. Nonetheless, it predicts favourable rates of
indirect detection, which can be seen in square-km size neutrino telescopes.Comment: Version to appear in Phys. Rev. D. A few references added in the
bibliography and a comment added in Section 2. LaTex, 16 pages, 4 figure
Markov Chain Monte Carlo Exploration of Minimal Supergravity with Implications for Dark Matter
We explore the full parameter space of Minimal Supergravity (mSUGRA),
allowing all four continuous parameters (the scalar mass m_0, the gaugino mass
m_1/2, the trilinear coupling A_0, and the ratio of Higgs vacuum expectation
values tan beta) to vary freely. We apply current accelerator constraints on
sparticle and Higgs masses, and on the b -> s gamma branching ratio, and
discuss the impact of the constraints on g_mu-2. To study dark matter, we apply
the WMAP constraint on the cold dark matter density. We develop Markov Chain
Monte Carlo (MCMC) techniques to explore the parameter regions consistent with
WMAP, finding them to be considerably superior to previously used methods for
exploring supersymmetric parameter spaces. Finally, we study the reach of
current and future direct detection experiments in light of the WMAP
constraint.Comment: 16 pages, 4 figure
Live cell ATR-FTIR spectroscopy as a novel bioanalytical tool for cell glucose metabolism research
Current novel drug developments for the treatment of diabetes require multiple bioanalytical assays to interrogate the cellular metabolism, which are costly, laborious and time-consuming. Fourier-transform infrared (FTIR) spectroscopy is a nondestructive, label-free, sensitive and low-cost technique that is recently found to be suitable for studying living cells. The aim of this study is to demonstrate that live-cell FTIR can be applied to study the differences in glucose metabolism in cells in normal culturing medium and cells treated in high glucose (a diabetes model) in order to highlight the potential of the technique in diabetes research. Live HepG2 cells were treated in normal glucose (3.8 mM; control) or high glucose (25 mM) medium and were measured directly using the FTIR approach. Principal component analysis was used to highlight any possible correlated changes 24, 48 and 72 h after treatments. FTIR spectra of live cell treated in normal and high glucose medium have shown significant differences (p < 0.05) for all treatment time. The control cells have seen an increased in the absorbance at 1088, 1240 and 1400 cm −1, which are associated with phosphate stretching mode vibrations from phosphorylated proteins and DNA back bone; and symmetric stretching mode vibration of COO - from fatty acids, amino acids, lipids and carbohydrate metabolites. However, the high glucose treated cells have shown a different changes in the 1000–1200 cm −1 region, which is linked to the glycogen and ATP:ADP ratio. In conclusion, live-cell FTIR can be a low-cost method for the studies of metabolic changes in cells. </p
Reach of the Fermilab Tevatron for minimal supergravity in the region of large scalar masses
The reach of the Fermilab Tevatron for supersymmetric matter has been
calculated in the framework of the minimal supergravity model in the clean
trilepton channel. Previous analyses of this channel were restricted to scalar
masses m_0<= 1 TeV. We extend the analysis to large values of scalar masses
m_0\sim 3.5 TeV. This includes the compelling hyperbolic branch/focus point
(HB/FP) region, where the superpotential \mu parameter becomes small. In this
region, assuming a 5\sigma (3\sigma) signal with 10 (25) fb^{-1} of integrated
luminosity, the Tevatron reach in the trilepton channel extends up to
m_{1/2}\sim 190 (270) GeV independent of \tan\beta . This corresponds to a
reach in terms of the gluino mass of m_{\tg}\sim 575 (750) GeV.Comment: 11 page latex file including 6 EPS figures; several typos corrected
and references adde
Electroweak Supersymmetry around the Electroweak Scale
Inspired by the phenomenological constraints, LHC supersymmetry and Higgs
searches, dark matter search as well as string model building, we propose the
electroweak supersymmetry around the electroweak scale: the squarks and/or
gluinos are around a few TeV while the sleptons, sneutrinos, bino and winos are
within one TeV. The Higgsinos can be either heavy or light. We consider bino as
the dominant component of dark matter candidate, and the observed dark matter
relic density is achieved via the neutralino-stau coannihilations. Considering
the Generalized Minimal Supergravity (GmSUGRA), we show explicitly that the
electroweak supersymmetry can be realized, and the gauge coupling unification
can be preserved. With two Scenarios, we study the viable parameter spaces that
satisfy all the current phenomenological constraints, and we present the
concrete benchmark points. Furthermore, we comment on the fine-tuning problem
and LHC searches.Comment: RevTex4, 28 pages, 8 figures, 8 tables, version to appear in EPJ
- …
