2 research outputs found

    Methodology of Corrosion Testing of Nuclear and Fusion Reactors Materials Using TGA/DSC and MS Complex Techniques

    Get PDF
    The behavior of structural materials of nuclear and fusion reactors during operation largely determines their safe and economical work. Structural materials of nuclear and fusion reactors are operating under conditions of interaction with various chemical active elements (gases, vapor-gas mixtures, fission products, etc.) in a wide temperature range; they are subject to high requirements in terms of their thermal and corrosion resistance. This paper presents the new methodology of complex studies on structural materials corrosion resistance of nuclear and fusion reactors with different gases and vapor-gas mixtures by thermal-gravimetric analysis (TGA), differential-scanning calorimetry (DSC) and mass spectrometry (MS) methods simultaneously

    Optical spectra in pure-silica-core single mode optical fibers after high-fluence reactor irradiation

    No full text
    The paper describes the study of radiation-induced attenuation (RIA) spectra in reactor-irradiated single mode at λ=1.55 μm optical fibers (OFs) with differente high-temperature coatings (polyimyde, aluminum and copper). The OFs were previously irradiated up to fast neutron fluence 1.8·1020 n/cm2 and gamma dose 2.32 GGy. After three years of storage at room temperature (RT), the RIA spectra were examined in the range of 650–1700 nm. All RIA mechanisms acting in this spectral range were identified: a tail of non-bridging oxygen hole center, a long-wavelength RIA (LWRIA) band with a maximum at λ > 1600 nm, unstructured “grey” loss due to coating microbendings or damage, and an absorption band peaking at 930 nm (E=1.33 eV). It was found out that the LWRIA can be significantly annealed at RT in polyimide-coated OFs. Grey loss were found to be more stable than those causing LWRIA.The LWRIA arising in reactor- and gamma-irradiated OFs have close thermal stability at RT and exhibit a similar shapes, which close to the absorption band of self-trapped holes (STH). This suggests a STH-like nature of the LWRIA
    corecore