9 research outputs found

    Adverse Cardiovascular Outcomes and Antihypertensive Treatment: A Genome-Wide Interaction Meta-Analysis in the International Consortium for Antihypertensive Pharmacogenomics Studies

    Get PDF
    We sought to identify genome-wide variants influencing antihypertensive drug response and adverse cardiovascular outcomes, utilizing data from four randomized controlled trials in the International Consortium for Antihypertensive Pharmacogenomics Studies (ICAPS). Genome-wide antihypertensive drug-single nucleotide polymorphism (SNP) interaction tests for four drug classes (β-blockers, n = 9,195; calcium channel blockers (CCBs), n = 10,511; thiazide/thiazide-like diuretics, n = 3,516; ACE-inhibitors/ARBs, n = 2,559) and cardiovascular outcomes (incident myocardial infarction, stroke, or death) were analyzed among patients with hypertension of European ancestry. Top SNPs from the meta-analyses were tested for replication of cardiovascular outcomes in an independent Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) study (n = 21,267), blood pressure (BP) response in independent ICAPS studies (n = 1,552), and ethnic validation in African Americans from the Genetics of Hypertension Associated Treatment study (GenHAT; n = 5,115). One signal reached genome-wide significance in the β-blocker-SNP interaction analysis (rs139945292, Interaction P = 1.56 × 10−8). rs139945292 was validated through BP response to β-blockers, with the T-allele associated with less BP reduction (systolic BP response P = 6 × 10−4, Beta = 3.09, diastolic BP response P = 5 × 10−3, Beta = 1.53). The T-allele was also associated with increased adverse cardiovascular risk within the β-blocker treated patients’ subgroup (P = 2.35 × 10−4, odds ratio = 1.57, 95% confidence interval = 1.23–1.99). The locus showed nominal replication in CHARGE, and consistent directional trends in β-blocker treated African Americans. rs139945292 is an expression quantitative trait locus for the 50 kb upstream gene NTM (neurotrimin). No SNPs attained genome-wide significance for any other drugs classes. Top SNPs were located near CALB1 (CCB), FLJ367777 (ACE-inhibitor), and CES5AP1 (thiazide). The NTM region is associated with increased risk for adverse cardiovascular outcomes and less BP reduction in β-blocker treated patients. Further investigation into this region is warranted

    Tutela e conservazione degli oggetti liturgici

    Get PDF
    BACKGROUND: Identification of genetic markers of antihypertensive drug responses could assist in individualization of hypertension treatment. METHODS AND RESULTS: We conducted a genome-wide association study to identify gene loci influencing the responsiveness of 228 male patients to 4 classes of antihypertensive drugs. The Genetics of Drug Responsiveness in Essential Hypertension (GENRES) study is a double-blind, placebo-controlled cross-over study where each subject received amlodipine, bisoprolol,hydrochlorothiazide, and losartan, each as a monotherapy, in a randomized order. Replication analyses were performed in 4 studies with patients of European ancestry (PEAR Study, N=386; GERA I and II Studies, N=196 and N=198; SOPHIA Study, N=372). We identified 3 single-nucleotide polymorphisms within the ACY3 gene that showed associations with bisoprolol response reaching genome-wide significance (P40 genes identified in genome-wide association studies of hypertension. Replication analyses of GENRES results provided suggestive evidence for a missense variant (rs3814995) in the NPHS1 (nephrin) gene influencing losartan response, and for 2 variants influencing hydrochlorothiazide response, located within or close to the ALDH1A3 (rs3825926) and CLIC5 (rs321329) genes. CONCLUSIONS: These data provide some evidence for a link between biology of the glomerular protein nephrin and antihypertensive action of angiotensin receptor antagonists and encourage additional studies on aldehyde dehydrogenase\u2013mediated reactions in antihypertensive drug action

    TET2 and CSMD1 genes affect SBP response to hydrochlorothiazide in never-treated essential hypertensives

    No full text
    Background: Thiazide diuretics have been recommended as a first-line antihypertensive treatment, although the choice of 'the right drug in the individual essential hypertensive patient' remains still empirical. Essential hypertension is a complex, polygenic disease derived from the interaction of patient's genetic background with the environment. Pharmacogenomics could be a useful tool to pinpoint gene variants involved in antihypertensive drug response, thus optimizing therapeutic advantages and minimizing side effects. Methods and results: We looked for variants associated with blood pressure response to hydrochlorothiazide over an 8-week follow-up by means of a genome-wide association analysis in two Italian cohorts of never-treated essential hypertensive patients: 343 samples from Sardinia and 142 from Milan. TET2 and CSMD1 as plausible candidate genes to affect SBP response to hydrochlorothiazide were identified. The specificity of our findings for hydrochlorothiazide was confirmed in an independent cohort of essential hypertensive patients treated with losartan. Our best findings were also tested for replication in four independent hypertensive samples of European Ancestry, such as GENetics of drug RESponsiveness in essential hypertension, Genetic Epidemiology of Responses to Antihypertensives, NORdic DILtiazem intervention, Pharmacogenomics Evaluation of Antihypertensive Responses, and Campania Salute Network-StayOnDiur. We validated a polymorphism in CSMD1 and UGGT2. Conclusion: This exploratory study reports two plausible loci associated with SBP response to hydrochlorothiazide: TET2, an aldosterone-responsive mediator of ENaC gene transcription; and CSMD1, previously described as associated with hypertension in a case-control study
    corecore