781 research outputs found

    Surface morphology in engineering applications: Influence of roughness on sliding and wear in dry fretting

    Get PDF
    Influence of initial surface roughness on friction and wear processes under fretting conditions was investigated experimentally. Rough surfaces (Ra=0.15-2.52 [mu]m) were prepared on two materials: carbon alloy (AISI 1034) and titanium alloy (Ti-6Al-4V). Strong influence of initial surface roughness on friction and wear processes is reported for both tested materials. Lower coefficient of friction and increase in wear rate was observed for rough surfaces. Wear activation energy is increasing for smoother surfaces. Lower initial roughness of surface subjected to gross slip fretting can delay activation of wear process and reduce wear rate; however, it can slightly increase the coefficient of friction

    Quark energy loss and shadowing in nuclear Drell-Yan process

    Full text link
    The energy loss effect in nuclear matter is another nuclear effect apart from the nuclear effects on the parton distribution as in deep inelastic scattering process. The quark energy loss can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of three kinds of quark energy loss parameterizations given in literature and the nuclear parton distribution extracted only with lepton-nucleus deep inelastic scattering experimental data, measured Drell-Yan production cross sections are analyzed for 800GeV proton incident on a variety of nuclear targets from FNAL E866. It is shown that our results with considering the energy loss effect are much different from these of the FNAL E866 who analysis the experimental data with the nuclear parton distribution functions obtained by using the deep inelastic lA collisions and pA nuclear Drell-Yan data . Considering the existence of energy loss effect in Drell-Yan lepton pairs production,we suggest that the extraction of nuclear parton distribution functions should not include Drell-Yan experimental data.Comment: 12 page

    Interface roughness effect on friction map under fretting contact conditions

    Get PDF
    In many industrial applications where fretting damage is observed in the contact (e.g. rotor/blade, electrical contacts, assembly joint, axe/wheel, clutch) the external loadings or geometry design cannot be changed. Therefore, the surface preparation and finishing process become essential to control and reduce the damage caused by fretting. In this paper, the authors present the experimental study of the initial surface roughness and machining process influence on fretting conditions in both partial and full sliding regimes. Surfaces prepared by milling and smooth abrasive polishing processes have been analysed. The influence of roughness on sliding behaviour and analysis of friction have been reported. Also, the contact pressure influence and qualitative analysis of fretting wear scar have been presented

    Using Battery Level as Metric for Graph Planarization

    Get PDF
    International audienceTopology control in wireless sensor networks is an important issue for scalability and energy efficiency. It is often based on graph reduction performed through the use of Gabriel Graph or Relative Neighborhood Graph. This graph reduction is usually based on geometric values. In this paper we tackle the problem of possible connectivity loss in the reduced graph by applying a battery level based reduction graph. Experiments are conducted to evaluate our proposition. Results are compared with RNG reduction which takes into account only the strength of the received signal (RSSI). Results show that our algorithm maintains network connectivity longer than solutions from the literature and balances the energy consumption over nodes

    Feasibility on equivalence ratio measurement via OH*, CH*, and C2* chemiluminescence and study of soot emissions in co-flow non-premixed DME/C1–C2 hydrocarbon flames

    Get PDF
    The effects of dimethyl ether (DME) addition to methane and ethylene fuels on the combustion characteristics of heat release, soot emissions, and flame temperature were investigated experimentally and numerically in a non-premixed laminar flame configuration. The flame-heat release soot-volume fraction was measured experimentally using CH*, OH*, and C2* chemiluminescence and planar two-color soot pyrometry, respectively. The CH*, OH*, and C2* were used to locate flame-heat release regions as well as to investigate the soot signal’s effect on their measurements. The ratios of the chemiluminescence pairs (OH*/CH* and OH*/C2*) were studied for the feasibility of map local equivalence ratios. Numerical calculations across a full range of DME mixing ratios were performed through 1D laminar flame simulations implemented with a detailed mechanism to provide an indication of the flame structures and profiles of key species including OH*, OH, CH*, CH, CH3, C3H3, C2H2, heat release rate (HRR), and flame temperature. An existing developed soot model was used in a 2D computational study to investigate its validity for modeling soot for DME (oxygenated fuel)/C2H4/N2 flames. Parametric studies have been carried out on some key parameters in the soot model to find optimum values that can be used in future studies. Although soot radiation intensities increased at a small amount (25%vol) of DME addition in the DME/methane flames, the soot pyrometry results showed a reduced soot volume fraction with an increased DME mixture ratio in both DME/methane and DME/ethylene flames studied, agreeing with the key conclusion of 1D numerical results. The flame HRR decreases with the increasing addition of DME to methane and ethylene flames and correlates with the trend of OH* and CH* profiles. The 1D simulation showed a non-monotonic correlation between OH*/CH* ratios and equivalence ratios, implying a limited use of OH*/CH* for the equivalence ratio measurement in non-premixed flames with DME additions

    Measurement of Ultra-Low Potassium Contaminations with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Among the radio-isotopes, \k40 is one of the most abundant and yet whose signatures are difficult to reject. Procedures were devised to measure trace potassium concentrations in the inorganic salt CsI as well as in organic liquid scintillator (LS) with Accelerator Mass Spectrometry (AMS), giving, respectively, the \k40-contamination levels of ∼10−10\sim 10^{-10} and ∼10−13\sim 10^{-13} g/g. Measurement flexibilities and sensitivities are improved over conventional methods. The projected limiting sensitivities if no excess of potassium signals had been observed over background are 8×10−138 \times 10^{-13} g/g and 3×10−173 \times 10^{-17} g/g for the CsI and LS, respectively. Studies of the LS samples indicate that the radioactive contaminations come mainly in the dye solutes, while the base solvents are orders of magnitude cleaner. The work demonstrate the possibilities of measuring naturally-occurring isotopes with the AMS techniques.Comment: 18 pages, 4 figures, 3 table

    Unraveling the Rich Fragmentation Dynamics Associated with S-H Bond Fission Following Photoexcitation of H <sub>2</sub>S at Wavelengths ∼129.1 nm

    Get PDF
    H2S is being detected in the atmospheres of ever more interstellar bodies, and photolysis is an important mechanism by which it is processed. Here, we report H Rydberg atom time-of-flight measurements following the excitation of H2S molecules to selected rotational (JKaKc′) levels of the 1B1 Rydberg state associated with the strong absorption feature at wavelengths of λ ∼ 129.1 nm. Analysis of the total kinetic energy release spectra derived from these data reveals that all levels predissociate to yield H atoms in conjunction with both SH(A) and SH(X) partners and that the primary SH(A)/SH(X) product branching ratio increases steeply with ⟨Jb2⟩, the square of the rotational angular momentum about the b-inertial axis in the excited state. These products arise via competing homogeneous (vibronic) and heterogeneous (Coriolis-induced) predissociation pathways that involve coupling to dissociative potential energy surfaces (PES(s)) of, respectively, 1A″ and 1A′ symmetries. The present data also show H + SH(A) product formation when exciting the JKaKc′ = 000 and 111 levels, for which ⟨Jb2⟩ = 0 and Coriolis coupling to the 1A′ PES(s) is symmetry forbidden, implying the operation of another, hitherto unrecognized, route to forming H + SH(A) products following excitation of H2S at energies above ∼9 eV. These data can be expected to stimulate future ab initio molecular dynamic studies that test, refine, and define the currently inferred predissociation pathways available to photoexcited H2S molecules

    ATIC and PAMELA Results on Cosmic e^\pm Excesses and Neutrino Masses

    Get PDF
    Recently the ATIC and PAMELA collaborations released their results which show the abundant e^\pm excess in cosmic rays well above the background, but not for the \bar{p}. Their data if interpreted as the dark matter particles' annihilation imply that the new physics with the dark matter is closely related to the lepton sector. In this paper we study the possible connection of the new physics responsible for the cosmic e^\pm excesses to the neutrino mass generation. We consider a class of models and do the detailed numerical calculations. We find that these models can natually account for the ATIC and PAMELA e^\pm and \bar{p} data and at the same time generate the small neutrino masses.Comment: 7 pages, 5 figures. Published version with minor corrections and more reference

    Measurement of Trace I-129 Concentrations in CsI Powder and Organic Liquid Scintillator with Accelerator Mass Spectrometry

    Full text link
    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Procedures were devised to measure trace concentrations of I-129 in the inorganic salt CsI as well as in organic liquid scintillator with Accelerator Mass Spectrometry (AMS) which leads to improvement in sensitivities by several orders of magnitude over other methods. No evidence of their existence in these materials were observed. Limits of < 6 X 10^{-13} g/g and < 2.6 X 10^{-17} g/g on the contaminations of I-129 in CsI and liquid scintillator, respectively, were derived.These are the first results in a research program whose goals are to develop techniques to measure trace radioactivity in detector materials by AMS.Comment: Proceedings of 10th International Conference on Accelerator Mass Spectrometr

    Single Photons on Pseudo-Demand from Stored Parametric Down-Conversion

    Full text link
    We describe the results of a parametric down-conversion experiment in which the detection of one photon of a pair causes the other photon to be switched into a storage loop. The stored photon can then be switched out of the loop at a later time chosen by the user, providing a single photon for potential use in a variety of quantum information processing applications. Although the stored single photon is only available at periodic time intervals, those times can be chosen to match the cycle time of a quantum computer by using pulsed down-conversion. The potential use of the storage loop as a photonic quantum memory device is also discussed.Comment: 8 pages, 7 Figs., RevTe
    • …
    corecore