13 research outputs found

    Evaluation of a Novel Broad-Spectrum PCR-Multiplex Genotyping Assay for Identification of Cutaneous Wart-Associated Human Papillomavirus Types

    Get PDF
    A large number of human papillomavirus (HPV) types, distributed over five papillomavirus genera, are detectable in the skin. HPV types belonging to the alpha, gamma, and mu genera have been detected in cutaneous warts. A state-of-the-art HPV genotyping assay for these cutaneous wart-associated HPV types does not exist although warts constitute a highly prevalent skin condition, especially in children (33%) and organ transplant recipients (45%). Cutaneous warts are again the focus of attention as their clinical relevance rises with the increasing number of chronically immunosuppressed patients. The objective of this study was to develop and evaluate a DNA-based genotyping system for all known cutaneous wart-related HPV types using PCR and Luminex xMAP technology. The broad-spectrum PCR amplified DNA of all known wart-associated HPV types from the genera alpha (HPVs 2, 3, 7, 10, 27, 28, 29, 40, 43, 57, 77, 91, and 94), gamma (HPVs 4, 65, 95, 48, 50, 60, and 88), mu (HPVs 1 and 63), and nu (HPV41). The probes were evaluated using plasmid HPV DNA and a panel of 45 previously characterized cutaneous wart biopsy specimens showing high specificity. HPV was also identified in 96% of 100 swabs from nongenital cutaneous warts. HPV types 1, 2, 27, and 57 were the most prevalent HPV types detected in 89% of the swabs. In conclusion, this Luminex-based genotyping system identifies all known cutaneous wart HPV types including phylogenetically related types, is highly HPV type specific, and is suitable for large-scale epidemiological studies.Minor Ailment

    Processed pseudogenes acquired somatically during cancer development

    Get PDF
    Cancer evolves by mutation, with somatic reactivation of retrotransposons being one such mutational process. Germline retrotransposition can cause processed pseudogenes, but whether this occurs somatically has not been evaluated. Here we screen sequencing data from 660 cancer samples for somatically acquired pseudogenes. We find 42 events in 17 samples, especially non-small cell lung cancer (5/27) and colorectal cancer (2/11). Genomic features mirror those of germline LINE element retrotranspositions, with frequent target-site duplications (67%), consensus TTTTAA sites at insertion points, inverted rearrangements (21%), 5′ truncation (74%) and polyA tails (88%). Transcriptional consequences include expression of pseudogenes from UTRs or introns of target genes. In addition, a somatic pseudogene that integrated into the promoter and first exon of the tumour suppressor gene, MGA, abrogated expression from that allele. Thus, formation of processed pseudogenes represents a new class of mutation occurring during cancer development, with potentially diverse functional consequences depending on genomic context

    A possible role for human papillomavirus as a co-factor with UV radiation in skin carcinogenesis

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN026913 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Metastatic cutaneous squamous cell carcinoma shows frequent deletion in the protein tyrosine phosphatase receptor Type D gene

    No full text
    Cutaneous squamous cell carcinoma (cSCC) is the second most common form of nonmelanoma skin cancer (NMSC), and its incidence is increasing rapidly. Metastatic cSCC accounts for the majority of deaths associated with NMSC, but the genetic basis for cSCC progression remains poorly understood. A previous study identified small deletions (typically <1 Mb) in the protein tyrosine phosphatase receptor Type D (PTPRD) gene that segregated with more aggressive cSCC. To investigate the apparent association between deletion within PTPRD and cSCC metastasis, a series of 74 formalin-fixed paraffin-embedded tumors from 31 patients was analyzed using a custom Illumina 384 SNP microarray. Deletions were found in 37% of patients with metastatic cSCC and were strongly associated with metastatic tumors when compared to those that had not metastasized (p = 0.007). Subsequent mutation analysis revealed a higher mutation rate for PTPRD than has been reported in any other cancer type, with 37% of tumors harboring a somatic mutation. Conversely, bisulfite sequencing showed that methylation was not a mechanism of PTPRD disruption in cSCC. This is the first report to observe an association between deletion within PTPRD and metastatic disease and highlights the potential use of these deletions as a diagnostic biomarker for tumor progression. Combined with the high mutation rate observed in our study, PTPRD is one of the most commonly altered genes in cSCC and warrants further investigation to determine its significance for metastasis in other tumor types
    corecore