118 research outputs found

    Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma

    Get PDF
    Accurately identifying patients with high-grade serous ovarian carcinoma (HGSOC) who respond to poly(ADP-ribose) polymerase inhibitor (PARPi) therapy is of great clinical importance. Here we show that quantitative BRCA1 methylation analysis provides new insight into PARPi response in preclinical models and ovarian cancer patients. The response of 12 HGSOC patient-derived xenografts (PDX) to the PARPi rucaparib was assessed, with variable dose-dependent responses observed in chemo-naive BRCA1/2-mutated PDX, and no responses in PDX lacking DNA repair pathway defects. Among BRCA1-methylated PDX, silencing of all BRCA1 copies predicts rucaparib response, whilst heterozygous methylation is associated with resistance. Analysis of 21 BRCA1-methylated platinum-sensitive recurrent HGSOC (ARIEL2 Part 1 trial) confirmed that homozygous or hemizygous BRCA1 methylation predicts rucaparib clinical response, and that methylation loss can occur after exposure to chemotherapy. Accordingly, quantitative BRCA1 methylation analysis in a pre-treatment biopsy could allow identification of patients most likely to benefit, and facilitate tailoring of PARPi therapy.Olga Kondrashova … M.K. Oehler … [et al.] (Australian Ovarian Cancer Study (AOCS)

    Distinct Assemblies of Heterodimeric Cytokine Receptors Govern Stemness Programs in Leukemia

    Get PDF
    Published first May 16, 2023Leukemia stem cells (LSC) possess distinct self-renewal and arrested differentiation properties that are responsible for disease emergence, therapy failure, and recurrence in acute myeloid leukemia (AML). Despite AML displaying extensive biological and clinical heterogeneity, LSC with high interleukin-3 receptor (IL3R) levels are a constant yet puzzling feature, as this receptor lacks tyrosine kinase activity. Here, we show that the heterodimeric IL3Rα/βc receptor assembles into hexamers and dodecamers through a unique interface in the 3D structure, where high IL3Rα/βc ratios bias hexamer formation. Importantly, receptor stoichiometry is clinically relevant as it varies across the individual cells in the AML hierarchy, in which high IL3Rα/βc ratios in LSCs drive hexamer-mediated stemness programs and poor patient survival, while low ratios mediate differentiation. Our study establishes a new paradigm in which alternative cytokine receptor stoichiometries differentially regulate cell fate, a signaling mechanism that may be generalizable to other transformed cellular hierarchies and of potential therapeutic significance.Winnie L. Kan, Urmi Dhagat, Kerstin B. Kaufmann, Timothy R. Hercus, Tracy L. Nero, Andy G.X. Zeng, John Toubia, Emma F. Barry, Sophie E. Broughton, Guillermo A. Gomez, Brooks A. Benard, Mara Dottore, Karen S. Cheung Tung Shing, Héléna Boutzen, Saumya E. Samaraweera, Kaylene J. Simpson, Liqing Jin, Gregory J. Goodall, C. Glenn Begley, Daniel Thomas, Paul G. Ekert, Denis Tvorogov, Richard J. D, Andrea, John E. Dick, Michael W. Parker, and Angel F. Lope

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Global Properties of Solar Flares

    Full text link

    Virulence Factors IN Fungi OF Systemic Mycoses

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Excited state electron transfer in systems with a well-defined geometry. Progress report, May 1, 1979-April 30, 1980

    No full text
    To determine what are the important criteria governing efficient light-induced electron transfer, we have been studying cyclophanes formed by joining two chlorophyll macrocycles together with two covalent linkages. The properties of the cofacial dimer can be altered by adding one or two magnesium atoms. When a cyclophane containing only one metal atom is excited electron transfer takes place in under ten picoseconds. Evidence for the formation of a state having a great deal of charge transfer interaction or perhaps even a radical pair is found in the time resolved difference spectrum which shows a contribution due to a cation of the magnesium containing macrocycle and an anion of the metal free portion of the molecule. The lifetime of the charge transfer state is 2.4 nsec. This would indicate that we have stabilized the charge separation for a relatively long time. The metal free dimer has an excited state product which does not appear to be a triplet state. The lifetime of this product is very long. The identity of the product has not as yet been obtained. It too could be a charge transfer state. If this is true, we have succeeded in stabilizing the charge separation for an extremely long time. Finally, we observed that the photophysical properties of the chlorophyll macrocycle are modified by reduction of the vinyl group on ring I
    corecore