248 research outputs found

    Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration

    Get PDF
    Arbuscular mycorrhizal fungi (AMF) form symbioses with most crops, potentially improving their nutrient assimilation and growth. The effects of cultivar and atmospheric CO2 concentration ([CO2]) on wheat–AMF carbon‐for‐nutrient exchange remain critical knowledge gaps in the exploitation of AMF for future sustainable agricultural practices within the context of global climate change. We used stable and radioisotope tracers (15N, 33P, 14C) to quantify AMF‐mediated nutrient uptake and fungal acquisition of plant carbon in three wheat (Triticum aestivum L.) cultivars. We grew plants under current ambient (440 ppm) and projected future atmospheric CO2 concentrations (800 ppm). We found significant 15N transfer from fungus to plant in all cultivars, and cultivar‐specific differences in total N content. There was a trend for reduced N uptake under elevated atmospheric [CO2]. Similarly, 33P uptake via AMF was affected by cultivar and atmospheric [CO2]. Total P uptake varied significantly among wheat cultivars and was greater at the future than current atmospheric [CO2]. We found limited evidence of cultivar or atmospheric [CO2] effects on plant‐fixed carbon transfer to the mycorrhizal fungi. Our results suggest that AMF will continue to provide a route for nutrient uptake by wheat in the future, despite predicted rises in atmospheric [CO2]. Consideration should therefore be paid to cultivar‐specific AMF receptivity and function in the development of climate smart germplasm for the future

    Mycorrhizas for a changing world: Sustainability, conservation, and society

    Get PDF
    Mycorrhizal fungi, of all types, hold huge significance for our planet and society. By forming mutualistic symbioses with the vast majority of land plants, mycorrhizas play an essential role in the formation and maintenance of global ecosystems. They also have great potential for exploitation to facilitate a variety of sustainability programs in agriculture, conservation, and restoration, particularly relevant in the context of global climate change and depletion of natural resources. As such, in addition to the fruiting bodies of many mycorrhiza‐forming fungal species being delicious, mycorrhizal symbioses are of critical and increasingly appreciated importance to human society. This editorial provides an overview of the relevance and potential roles of mycorrhizal fungi toward achieving global goals in sustainability, conservation and their significance within society, and highlights key directions for future research

    A quantitative method for the high throughput screening for the soil adhesion properties of plant and microbial polysaccharides and exudates

    Get PDF
    Background and aims Understanding the structures and functions of carbon-based molecules in soils is an important goal in the context of soils as an ecosystem function of immense importance. Polysaccharides are implicated in maintaining soil aggregate status but have not been extensively dissected in terms of their structures and soil adhesion properties. This is largely because of the technical difficulties in identifying polysaccharide structures and quantifying any functional properties. Methods Here, we describe the use of a novel nitrocellulose-based adhesion assay to determine the relative capacities for soil adhesion of over twenty plant and microbial polysaccharides that are likely to be present in soil and to contribute to organic matter content and properties. Weights of soil adhered to spots of known amounts of specific polysaccharides were quantified by scanning of the nitrocellulose sheets. Results The most effective polysaccharides identified from this survey included chitosan, ÎČ-1,3-glucan, gum tragacanth, xanthan and xyloglucan. We also demonstrate that the soil adhesion assay is suitable to assess the soil-binding properties of plant exudates. Conclusions The soil adhesion assay will be useful for the functional dissection of the organic matter components of soils and also of the factors involved in soil attachment to plant roots and in rhizosheath formation

    From rhizoids to roots? Experimental evidence of mutualism between liverworts and ascomycete fungi

    Get PDF
    Background and Aims The rhizoids of leafy liverworts (Jungermanniales, Marchantiophyta) are commonly colonized by the ascomycete fungus Pezoloma ericae. These associations are hypothesized to be functionally analogous to the ericoid mycorrhizas (ErMs) formed by P. ericae with the roots of Ericaceae plants in terms of bi-directional phosphorus for carbon exchange; however, this remains unproven. Here, we test whether associations between the leafy liverwort Cephalozia bicuspidata and P. ericae are mutualistic. Methods We measured movement of phosphorus and carbon between C. bicuspidata and P. ericae using [33P]orthophosphate and 14CO2 isotope tracers in monoxenic cultures. We also measured leafy liverwort growth, with and without P. ericae. Key Results We present the first demonstration of nutritionally mutualistic symbiosis between a non-vascular plant and an ErM-forming fungus, showing transfer of fungal-acquired P to the liverwort and of liverwort-fixed C to the fungus alongside increased growth in fungus-colonized liverworts. Conclusions Thus, this ascomycete–liverwort symbiosis can now be described as mycorrhiza-like, providing further insights into ericoid mycorrhizal evolution and adding Ascomycota fungi to mycorrhizal fungal groups engaging in mutualisms with plants across the land plant phylogeny. As P. ericae also colonizes the rhizoids of Schistochilaceae liverworts, which originated in the Triassic and are sister to all other jungermannialean liverworts associated with fungi, our findings point toward an early origin of ascomycete–liverwort symbioses, possibly pre-dating their evolution in the Ericales by some 150 million years

    Mycorrhizal mediation of sustainable development goals

    Get PDF
    This special issue, brought together during a time of unprecedented global change, represents a unique collection of papers that shed light on the current and future significance of mycorrhiza-forming fungi in the human world. Across this selection of papers, we explore the significance and potential of mycorrhizal fungi to contribute towards our achievement of global change goals of improved sustainability, food security and conservation as well as how we might best implement mycorrhizal knowledge and technologies to achieve these outcomes in modern societies

    Phytophagy impacts the quality and quantity of plant carbon resources acquired by mutualistic arbuscular mycorrhizal fungi

    Get PDF
    Arbuscular mycorrhizal (AM) fungi associate with the roots of many plant species, enhancing their host access to soil nutrients while obtaining their carbon supply directly as photosynthates. AM fungi often face competition for plant carbon from other organisms. The mechanisms by which plants prioritise carbon allocation to mutualistic AM fungi over parasitic symbionts remain poorly understood. Here, we show that host potato plants (Solanum tuberosum cv. Désirée) selectively allocate carbon resources to tissues interacting with AM fungi rather than those interacting with phytophagous parasites (the nematode Globodera pallida). We found that plants reduce the supply of hexoses but maintain the flow of plant21 derived fatty acids to AM fungi when concurrently interacting with parasites. Transcriptomic analysis suggest that plants prioritise carbon transfer to AM fungi by maintaining expression of fatty acid biosynthesis and transportation pathways, whilst decreasing the expression of mycorrhizal-induced hexose transporters. We also report similar findings from a different plant host species (Medicago truncatula) and phytophagous pest (the aphid Myzus persicae). These findings suggest a general mechanism of plant-driven resource allocation in scenarios involving multiple symbionts

    Critical research challenges facing Mucoromycotina ‘fine root endophytes’

    Get PDF
    Mucoromycotina 'Fine Root Endophytes' (MFRE), referred to previously as Glomus tenue (Greenall) or more recently Planticonsortium tenue (Walker et al., 2018), are a globally distributed group of soil fungi (Orchard et al., 2017a) that form endosymbioses with plants from across most of the land plant phylogeny (Rimington et al., 2019; Hoysted et al., 2018; 2019). Despite much progress having been made in characterising plant-MFRE symbioses in the last decade, significant challenges remain

    Mucoromycotina fine root endophyte fungi form nutritional mutualisms with vascular plants

    Get PDF
    Fungi and plants have engaged in intimate symbioses that are globally widespread and have driven terrestrial biogeochemical processes since plant terrestrialization >500 million years ago. Recently, hitherto unknown nutritional mutualisms involving ancient lineages of fungi and nonvascular plants have been discovered, although their extent and functional significance in vascular plants remain uncertain. Here, we provide evidence of carbon-for-nitrogen exchange between an early-diverging vascular plant (Lycopodiella inundata) and Mucoromycotina (Endogonales) fine root endophyte fungi. Furthermore, we demonstrate that the same fungal symbionts colonize neighboring nonvascular and flowering plants. These findings fundamentally change our understanding of the physiology, interrelationships, and ecology of underground plant–fungal symbioses in modern terrestrial ecosystems by revealing the nutritional role of Mucoromycotina fungal symbionts in vascular plants

    Cultivar‐dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO2

    Get PDF
    Societal Impact Statement Modern agriculture is under pressure to meet yield targets while reducing reliance on finite resources to improve sustainability. Climate change represents an additional challenge—elevated atmospheric CO2 concentrations may increase plant growth and boost yield, but the nutritional value of crops grown at elevated CO2 is often reduced. Arbuscular mycorrhizal fungi (AMF) can improve plant nutrition, although how this symbiosis will be affected by climate change is unclear. Here, we demonstrate mycorrhizal contribution to nitrogen and phosphorus nutrition in barley under current and future CO2 concentrations. In one cultivar, AMF substantially increased phosphorus uptake at elevated CO2 and prevented phosphorus dilution, suggesting the symbiosis may become more important for crop nutrient uptake in the future. Summary Globally important cereals such as barley (Hordeum vulgare L.) often engage in symbiosis with arbuscular mycorrhizal fungi (AMF). The impact of elevated atmospheric CO2 on nutrient exchange between these symbionts remains unknown. In controlled environment experiments, we used isotope tracers (15N, 33P, 14C) to quantify nutrient fluxes between two barley cultivars (Moonshine and Riviera) and their associated AMF at ambient (440 ppm) and elevated (800 ppm) CO2. Elevated CO2 reduced shoot N concentration in Moonshine, and shoot N and P concentration in Riviera. Elevated CO2 substantially increased mycorrhizal 33P acquisition in Moonshine. Mycorrhizal contribution to P uptake in Moonshine may have prevented dilution of tissue P concentration at elevated CO2. In Riviera, AMF did not improve 33P acquisition. Both cultivars received 15N from their AMF symbionts, and this acquisition was not influenced by CO2 concentration, although Moonshine received more 15N than Riviera. Our results suggest that AMF may provide substantial contributions to barley nutrition at current and projected future CO2 concentrations. This is especially noteworthy for barley, which is generally considered to have low mycorrhizal receptivity. AMF may help alleviate or avoid nutrient dilution normally observed at elevated CO2. Variation between cultivars indicates that mycorrhizal contribution to cereal nutrition could be improved through selective breeding practices

    Arbuscular mycorrhizal fungal‐induced tolerance is determined by fungal identity and pathogen density

    Get PDF
    Societal Impact Statement Plant-parasitic nematodes are a major concern for global food security, and many existing control options are being phased out due to adverse impacts on the environment. Here, we show that although application of arbuscular mycorrhizal fungi (AMF) increases host tolerance to these parasites, these benefits decrease as the parasite burden increases, limiting long-term benefits. This effect was consistent between experiments in the glasshouse and in the field environment, demonstrating the relevance of research into usable technologies. Our findings have potential to aid decision making regarding application of AMF inocula for optimum results in agricultural systems. Summary Plant-parasitic nematodes are a leading global threat to crop production and food security aims. Control strategies based on nematicides and fertilisers are increasingly undesirable due to economic and environmental impacts. Arbuscular mycorrhizal fungi (AMF) may induce host tolerance against pests such as the potato cyst nematode (PCN). Here, we determined the impact of PCN density on the tolerance induced by AMF-host interactions. Additionally, we evaluated the effects of five AMF inocula on PCN fitness though glasshouse and field trials. Greater PCN densities reduce the increased tolerance that AMF may confer on their hosts. This may be due to reduced mycorrhizal colonisation of hosts under higher PCN infection and potentially a threshold at which the presence of PCN severely impacts fungal growth. When tested in the field, the outcomes of AMF inoculation on crop yields were still positive. Inoculation of soil in the field also increased PCN multiplication, suggesting that AMF-induced tolerance may become reduced in the near future when the threshold PCN density is reached. Addition of AMF to agricultural soils may provide a short-term benefit yet lead to a long-term detriment by increasing PCN populations. The effects observed were driven by only one out of the five introduced AMF species, indicating that the remaining species were redundant for this application. This raises important considerations for future application of AMF inocula in agricultural systems and aids our understanding of how widely used ‘beneficial’ soil amendments impact the agricultural ecosystem
    • 

    corecore