118 research outputs found

    Topologies and Laplacian spectra of a deterministic uniform recursive tree

    Full text link
    The uniform recursive tree (URT) is one of the most important models and has been successfully applied to many fields. Here we study exactly the topological characteristics and spectral properties of the Laplacian matrix of a deterministic uniform recursive tree, which is a deterministic version of URT. Firstly, from the perspective of complex networks, we determine the main structural characteristics of the deterministic tree. The obtained vigorous results show that the network has an exponential degree distribution, small average path length, power-law distribution of node betweenness, and positive degree-degree correlations. Then we determine the complete Laplacian spectra (eigenvalues) and their corresponding eigenvectors of the considered graph. Interestingly, all the Laplacian eigenvalues are distinct.Comment: 7 pages, 1 figures, definitive version accepted for publication in EPJ

    Construction status and prospects of the Hyper-Kamiokande project

    Get PDF
    The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027

    Prospects for neutrino astrophysics with Hyper-Kamiokande

    Get PDF
    Hyper-Kamiokande is a multi-purpose next generation neutrino experiment. The detector is a two-layered cylindrical shape ultra-pure water tank, with its height of 64 m and diameter of 71 m. The inner detector will be surrounded by tens of thousands of twenty-inch photosensors and multi-PMT modules to detect water Cherenkov radiation due to the charged particles and provide our fiducial volume of 188 kt. This detection technique is established by Kamiokande and Super-Kamiokande. As the successor of these experiments, Hyper-K will be located deep underground, 600 m below Mt. Tochibora at Kamioka in Japan to reduce cosmic-ray backgrounds. Besides our physics program with accelerator neutrino, atmospheric neutrino and proton decay, neutrino astrophysics is an important research topic for Hyper-K. With its fruitful physics research programs, Hyper-K will play a critical role in the next neutrino physics frontier. It will also provide important information via astrophysical neutrino measurements, i.e., solar neutrino, supernova burst neutrinos and supernova relic neutrino. Here, we will discuss the physics potential of Hyper-K neutrino astrophysics

    A position-sensitive large-area microchannel plate detector with digital data-acquisition system for studies of exotic nuclei

    No full text
    International audienceDevelopment of a position-sensitive large-area microchannel plate (MCP) detector based detection system is reported. Two MCPs with 120 mm active diameter, mounted in chevron configuration, with delay-line anode are read out by a digital data-acquisition system consists of fast-timing amplifier unit and CAEN v1751 waveform digitizer. Details of the digital pulse processing, programmed triggering and calibration setup are described. The obtained position resolution was studied using α-particles, the best resolutions on X and Y axes are 460 ± 1μm and 579 ± 1μm in FWHM, respectively
    • …
    corecore