22 research outputs found
Asymptotically Free Non-Abelian Gauge Theories With Fermions and Scalars As Alternatives to QCD
In this paper we construct non-Abelian gauge theories with fermions and
scalars that nevertheless possess asymptotic freedom.The scalars are taken to
be in a chiral multiplet transforming as under
and transforming as singlets under the colour SU(3) group. We consider two
distinct scenarios, one in which the additional scalars are light and another
in which they are heavier than half the Z-boson mass. It is shown that
asymptotic freedom is obtained without requiring that all additional couplings
keep fixed ratios with each other. It is also shown that both scenarios can not
be ruled out by what are considered standard tests of QCD like R- parameter,
g-2 for muons or deep inelastic phenomena. The light mass scenario is however
ruled out by high precision Z-width data (and only by that one data).The heavy
mass scenario is still viable and is shown to naturally pass the test of
flavour changing neutral currents. It also is not ruled out by precision
electroweak oblique parameters. Many distinctive experimental signatures of
these models are also discussed.Comment: 37 pages in LATEX with 10 fig
Extragalactic jets on subpc and large scales
Jets can be probed in their innermost regions (d~0.1 pc) through the study of
the relativistically-boosted emission of blazars. On the other extreme of
spatial scales, the study of structure and dynamics of extragalactic
relativistic jets received renewed impulse after the discovery, made by
Chandra, of bright X-ray emission from regions at distances larger than
hundreds of kpc from the central engine. At both scales it is thus possible to
infer some of the basic parameters of the flow (speed, density, magnetic field
intensity, power). After a brief review of the available observational
evidence, I discuss how the comparison between the physical quantities
independently derived at the two scales can be used to shed light on the global
dynamics of the jet, from the innermost regions to the hundreds of kpc scale.Comment: Proceedings of the 5th Stromlo Symposium: Disks, Winds, and Jets -
from Planets to Quasars. Accepted, to be published in Astrophysics & Space
Scienc
Ordering and Fluctuation of Orbital and Lattice Distortion in Perovskite Manganese Oxides
Roles of orbital and lattice degrees of freedom in strongly correlated
systems are investigated to understand electronic properties of perovskite Mn
oxides such as La_{1-x}Sr_{x}MnO_{3}. An extended double-exchange model
containing Coulomb interaction, doubly degenerate orbitals and Jahn-Teller
coupling is derived under full polarization of spins with two-dimensional
anisotropy. Quantum fluctuation effects of Coulomb interaction and orbital
degrees of freedom are investigated by using the quantum Monte Carlo method. In
undoped states, it is crucial to consider both the Coulomb interaction and the
Jahn-Teller coupling in reproducing characteristic hierarchy of energy scales
among charge, orbital-lattice and spin degrees of freedom in experiments. Our
numerical results quantitatively reproduce the charge gap amplitude as well as
the stabilization energy and the amplitude of the cooperative Jahn-Teller
distortion in undoped compounds. Upon doping of carriers, in the absence of the
Jahn-Teller distortion, critical enhancement of both charge compressibility and
orbital correlation length is found with decreasing doping concentration. These
are discussed as origins of strong incoherence in charge dynamics. With the
Jahn-Teller coupling in the doped region, collapse of the Jahn-Teller
distortion and instability to phase separation are obtained and favorably
compared with experiments. These provide a possible way to understand the
complicated properties of lightly doped manganites.Comment: 22 pages RevTeX including 25 PS figures, submitted to Phys.Rev.B,
replaced version; two figures are replaced by Fig.17 with minor changes in
the tex