22 research outputs found

    Exact quantum states of a general time-dependent quadratic system from classical action

    Full text link
    A generalization of driven harmonic oscillator with time-dependent mass and frequency, by adding total time-derivative terms to the Lagrangian, is considered. The generalization which gives a general quadratic Hamiltonian system does not change the classical equation of motion. Based on the observation by Feynman and Hibbs, the propagators (kernels) of the systems are calculated from the classical action, in terms of solutions of the classical equation of motion: two homogeneous and one particular solutions. The kernels are then used to find wave functions which satisfy the Schr\"{o}dinger equation. One of the wave functions is shown to be that of a Gaussian pure state. In every case considered, we prove that the kernel does not depend on the way of choosing the classical solutions, while the wave functions depend on the choice. The generalization which gives a rather complicated quadratic Hamiltonian is simply interpreted as acting an unitary transformation to the driven harmonic oscillator system in the Hamiltonian formulation.Comment: Submitted to Phys. Rev.

    Unitary relation between a harmonic oscillator of time-dependent frequency and a simple harmonic oscillator with and without an inverse-square potential

    Get PDF
    The unitary operator which transforms a harmonic oscillator system of time-dependent frequency into that of a simple harmonic oscillator of different time-scale is found, with and without an inverse-square potential. It is shown that for both cases, this operator can be used in finding complete sets of wave functions of a generalized harmonic oscillator system from the well-known sets of the simple harmonic oscillator. Exact invariants of the time-dependent systems can also be obtained from the constant Hamiltonians of unit mass and frequency by making use of this unitary transformation. The geometric phases for the wave functions of a generalized harmonic oscillator with an inverse-square potential are given.Comment: Phys. Rev. A (Brief Report), in pres

    A geometric approach to time evolution operators of Lie quantum systems

    Full text link
    Lie systems in Quantum Mechanics are studied from a geometric point of view. In particular, we develop methods to obtain time evolution operators of time-dependent Schrodinger equations of Lie type and we show how these methods explain certain ad hoc methods used in previous papers in order to obtain exact solutions. Finally, several instances of time-dependent quadratic Hamiltonian are solved.Comment: Accepted for publication in the International Journal of Theoretical Physic

    Canonical quantization of so-called non-Lagrangian systems

    Full text link
    We present an approach to the canonical quantization of systems with equations of motion that are historically called non-Lagrangian equations. Our viewpoint of this problem is the following: despite the fact that a set of differential equations cannot be directly identified with a set of Euler-Lagrange equations, one can reformulate such a set in an equivalent first-order form which can always be treated as the Euler-Lagrange equations of a certain action. We construct such an action explicitly. It turns out that in the general case the hamiltonization and canonical quantization of such an action are non-trivial problems, since the theory involves time-dependent constraints. We adopt the general approach of hamiltonization and canonical quantization for such theories (Gitman, Tyutin, 1990) to the case under consideration. There exists an ambiguity (not reduced to a total time derivative) in associating a Lagrange function with a given set of equations. We present a complete description of this ambiguity. The proposed scheme is applied to the quantization of a general quadratic theory. In addition, we consider the quantization of a damped oscillator and of a radiating point-like charge.Comment: 13 page

    Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel

    No full text
    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes including deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling resulting from a combination of fuel particle swelling and interaction layer (IL) growth. In some cases, pore growth in the interaction layers also contributed to meat swelling. The main objective of this work was to determine the stress distribution within the fuel meat that caused these phenomena. A mechanical equilibrium between the stress generated by fuel meat swelling and the stress relieved by fission-induced creep in the meat constituents (U-Mo particles, Al matrix, and IL) was considered. Test plates with well-recorded fabrication data and irradiation conditions were used, and their post-irradiation examination (PIE) data was obtained. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. The simulation results allowed for the determination of effective stress and hydrostatic stress exerted on the meat constituents. The effects of fabrication and irradiation parameters on the stress distribution that drives microstructural evolutions, such as pore growth in the IL and Al matrix rupture, were investigated.clos

    Wide bandpass optical filters with TiO2 and Ta2O5

    No full text

    Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals

    No full text
    This paper presents a comprehensive review of the current state of knowledge of second harmonic generation (SHG) measurements, a subset of nonlinear ultrasonic nondestructive evaluation techniques. These SHG techniques exploit the material nonlinearity of metals in order to measure the acoustic nonlinearity parameter, . In these measurements, a second harmonic wave is generated from a propagating monochromatic elastic wave, due to the anharmonicity of the crystal lattice, as well as the presence of microstructural features such as dislocations and precipitates. This article provides a summary of models that relate the different microstructural contributions to , and provides details of the different SHG measurement and analysis techniques available, focusing on longitudinal and Rayleigh wave methods. The main focus of this paper is a critical review of the literature that utilizes these SHG methods for the nondestructive evaluation of plasticity, fatigue, thermal aging, creep, and radiation damage in metals.ISSN:0195-9298ISSN:1573-486
    corecore