8 research outputs found

    r-modes in Relativistic Superfluid Stars

    Full text link
    We discuss the modal properties of the rr-modes of relativistic superfluid neutron stars, taking account of the entrainment effects between superfluids. In this paper, the neutron stars are assumed to be filled with neutron and proton superfluids and the strength of the entrainment effects between the superfluids are represented by a single parameter η\eta. We find that the basic properties of the rr-modes in a relativistic superfluid star are very similar to those found for a Newtonian superfluid star. The rr-modes of a relativistic superfluid star are split into two families, ordinary fluid-like rr-modes (ror^o-mode) and superfluid-like rr-modes (rsr^s-mode). The two superfluids counter-move for the rsr^s-modes, while they co-move for the ror^o-modes. For the ror^o-modes, the quantity κσ/Ω+m\kappa\equiv\sigma/\Omega+m is almost independent of the entrainment parameter η\eta, where mm and σ\sigma are the azimuthal wave number and the oscillation frequency observed by an inertial observer at spatial infinity, respectively. For the rsr^s-modes, on the other hand, κ\kappa almost linearly increases with increasing η\eta. It is also found that the radiation driven instability due to the rsr^s-modes is much weaker than that of the ror^o-modes because the matter current associated with the axial parity perturbations almost completely vanishes.Comment: 14 pages, 4 figures. To appear in Physical Review

    R-mode Instability of Slowly Rotating Non-isentropic Relativistic Stars

    Get PDF
    We investigate properties of rr-mode instability in slowly rotating relativistic polytropes. Inside the star slow rotation and low frequency formalism that was mainly developed by Kojima is employed to study axial oscillations restored by Coriolis force. At the stellar surface, in order to take account of gravitational radiation reaction effect, we use a near-zone boundary condition instead of the usually imposed boundary condition for asymptotically flat spacetime. Due to the boundary condition, complex frequencies whose imaginary part represents secular instability are obtained for discrete rr-mode oscillations in some polytropic models. It is found that such discrete rr-mode solutions can be obtained only for some restricted polytropic models. Basic properties of the solutions are similar to those obtained by imposing the boundary condition for asymptotically flat spacetime. Our results suggest that existence of a continuous part of spectrum cannot be avoided even when its frequency becomes complex due to the emission of gravitational radiation.Comment: 10 pages, 4 figures, accepted for publlication in PR

    The rotational modes of relativistic stars: Numerical results

    Full text link
    We study the inertial modes of slowly rotating, fully relativistic compact stars. The equations that govern perturbations of both barotropic and non-barotropic models are discussed, but we present numerical results only for the barotropic case. For barotropic stars all inertial modes are a hybrid mixture of axial and polar perturbations. We use a spectral method to solve for such modes of various polytropic models. Our main attention is on modes that can be driven unstable by the emission of gravitational waves. Hence, we calculate the gravitational-wave growth timescale for these unstable modes and compare the results to previous estimates obtained in Newtonian gravity (i.e. using post-Newtonian radiation formulas). We find that the inertial modes are slightly stabilized by relativistic effects, but that previous conclusions concerning eg. the unstable r-modes remain essentially unaltered when the problem is studied in full general relativity.Comment: RevTeX, 29 pages, 31 eps figure

    Physical interpretation of gauge invariant perturbations of spherically symmetric space-times

    Get PDF
    By calculating the Newman-Penrose Weyl tensor components of a perturbed spherically symmetric space-time with respect to invariantly defined classes of null tetrads, we give a physical interpretation, in terms of gravitational radiation, of odd parity gauge invariant metric perturbations. We point out how these gauge invariants may be used in setting boundary and/or initial conditions in perturbation theory.Comment: 6 pages. To appear in PR

    R-mode oscillations of differentially and rapidly rotating Newtonian polytropic stars

    Get PDF
    For the analysis of the r-mode oscillation of hot young neutron stars, it is necessary to consider the effect of it differential rotation, because viscosity is not strong enough for differentially rotating young neutron stars to be lead to uniformly rotating configurations on a very short time scale after their birth. In this paper, we have developed a numerical scheme to solve r-mode oscillations of differentially rotating polytropic inviscid stars. This is the extended version of the method which was applied to compute r-mode oscillations of uniformly rotating Newtonian polytropic stars. By using this new method, we have succeeded in obtaining eigenvalues and eigenfunctions of r-mode oscillations of differentially rotating polytropic stars. Our numerical results show that as the degree of differential rotation is increased, it becomes more difficult to solve r-mode oscillations for slightly deformed configurations from sphere compared to solving r-mode oscillations of considerably deformed stars. One reason for it seems that for slightly deformed stars corotation points appear near the surface region if the degree of differential rotation is strong enough. This is similar to the situation that the perturbational approach of r-mode oscillations for it slowly rotating stars in general relativity results in a singular eigenvalue problem.Comment: including 7 figures. submitted to PR
    corecore