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Physical interpretation of gauge invariant perturbations of spherically symmetric space-times
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By calculating the Newman-Penrose Weyl tensor components of a perturbed spherically symmetric space-
time with respect to invariantly defined classes of null tetrads, we give a physical interpretation, in terms of
gravitational radiation, of odd parity gauge invariant metric perturbations. We point out how these gauge
invariants may be used in setting boundary and/or initial conditions in perturbation theory.
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[. INTRODUCTION both IGI and tetrad gauge invariafifGl) are the typeN
terms, and furthermore, that these terms can only be gauge
Perturbation theory in general relativity is complicated byinvariant if the background is of Petrov tyf# or confor-
the issue of coordinate freedom in the unperturbed backmally flat. These include all spherically symmetric space-
ground space-timeN,g,,,). If one formally adds a pertur- times. (We use the phrase “gauge invariant” to refer to a
bation to the metri(g_ﬂy—>gMV=5MV+hw, it is not neces- quantity which is both tetrad and identification gauge invari-
sarily true that one has moved to a different space-time: ant) Consequently, any attempt to attach physical signifi-
= b cance to the full set of perturbed Weyl scalars seems
may be the metrig,,, written in a different coordinate sys- doomed. However, as we will see below, this is not the case
tem, which is related to the original coordinates by an infi-for odd perturbationésee Ref[2] and Sec. Il below In this
nitesmal coordinate transformation. This is known as thecase, there is sufficient geometric information in the back-
identification gauge problem. The gauge freedom repreground that is invariant with respect to the generators of odd
sented by such infinitesmal coordinate transformations musgierturbations to enable the construction of gauge invariant
be dealt with carefully. One way to do this is to treat theperturbed Weyl scalars. This will allow the interpretation of
perturbation problem in hand using identification gauge inthe metric perturbations in terms of longitudinal and trans-
variant (IGI) quantities[1]. For perturbations of spherically verse waves propagating in the inward and outward radial
symmetric space-times, a complete set of such quantities repull directions of the spherically symmetric background and
resenting metric and matter perturbations, and the corran terms of a perturbation of the Coulombic interaction. As in
sponding IGI perturbation equations, have been given byhe analysis of Ref[1], this will involve the choice of a
Gerlach and Sengupi&S) [2]. We review their formalism  special class of tetrads, but one which admits an IGI descrip-
in Sec. Il below. tion. We follow the curvature, tetrad and NP conventions of
This formalism has been applied in many different areasRef. [20].
for example in studies of nonspherical stellar collajBe5),
critical collapse[6—9], phenomenology of naked singulari-
ties [10], black holeg11-13, cosmology{14—16, nonlin- Il. GERLACH-SENGUPTA FORMALISM
ear perturbation theoifyl 7] and perturbations of gauge fields . ] ) ] ]
[18,19. These studies have generally extracted the physical FOr convenience, we give a brief review of the formalism
significance of the metric perturbations, e.g. by calculatingntroduced by Gerlach and Sengujpd, following the pre-
the radiated power of gravitationa| Wav[d@] or by making sentation of Martin-Garcia and GundlaES] The metric of a
the connection with the more familiar Regge-Wheeler-Zerilli Spherically symmetric space-timé* can be written as
and Teukolsky perturbation formalismhitl]. Nevertheless, a
general and direct interpretation of the full set of IGI metric
perturbations has not been given. The aim in the present ds?= gap(X9)AXAdXB+12(XC) yapdx2dX°, (1)
paper is to attempt to do so by calculating the Newman-
Penrose(NP) Weyl tensor components of the perturbed
space-time. The typl- component, which represents trans- wheregag is a Lorentzian metric on a 2-dimensional mani-
verse gravitational waves has previously been calculated ifold with boundaryM? andy,, is the standard metric on the
Refs.[10] and[11]. In carrying out this calculation, one en- unit 2-sphereS?. Capital Latin indices represent tensor indi-
counters another type of gauge problem, namely the freedowes onM?, and lower case Latin indices are tensor indices
of choice in the null tetrad of the perturbed space-time.  on S%. r(x°) is a scalar field orM?2. 4-dimensional space-
Stewart and Walkef1] discussed this additional gauge time indices will be given in Greek. The covariant deriva-
invariance, and concluded that the only Weyl scalars that artves onM#, M? and S? will be denoted by a semicolon, a
vertical and a colon respectivelyag ande,y, are covariantly
constant antisymmetric unit tensors with respect t@ and
*Electronic address: brien.nolan@dcu.ie Yab- We define
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A Again, we can decompose into even and odd harmonics and
VAT 2 consider separately the transformations generated by the
1-form fields
Vom — £2+ 20"t 30 3 E=ExC)Y DA+ EE(XO) Y03, (13
r
£=¢0s,dx2. (14)

Writing the stress-energy tensor as

From the transformed versions of the metric perturbations,
one can construct combinations which are independent of the

I(coefﬂments ofg These combinations are then identification
gauge invariant. Writing

t,,dx#dX"=tap(X©) dXPdXB+ Q(XC)r?y,,dx?dX®, (4)

the Einstein equations of the spherically symmetric bac
ground read

2

Gag= —2(vaptvave) +Vodapg=87tag, 5 A= hﬁ—%G\A, (15)
5Ga= —RtvAatvioa=87Q, (6)  a complete set of IGI metric perturbations is given by
whereG2= y3"G,, andR is the Gaussian curvature bf2. Kag=has—2P(alB) - (16)
Spherical symmetry of the background allows us to ex-
pand the perturbed metric tensor in terms of spherical har- Ka= h,?—h‘AvL 2hvp, a7
monics. Writing Y=Y{" and suppressing the indicédsm
throughout, we have the following bases for scalar, vector [(1+1)
and tensor harmonics respectivelyY}, {Ya==Y:a,Sa k=K+— G—2v"pa. (18)

=eYpl  and  {Yyap,Zap=Yap+[1(1+1)/2]Y yap,S

+Sp.a}- These are further classified depending on the tranSS|m|larly, a complete set of IGI stress-energy tensor pertur-
formation properties under spatial inversion——x: a  pations may be constructed. We will not give these here, but
spherical harmonic with indelxis called even if it transforms  refer the reader to Ref§2] or [8]. The full set of IGI per-

as (—1)' and is called odd if it transforms as-(1)'*™. In  turbation equations may also be found in these references;
the bases aboveY,Y, and Z,, are even and,,S.,) are  we will not use these equations in the present paper.

odd. An important point to note is that this formalism is incom-
The perturbationsg,,, of the metric tensor can then be plete for|=0 and forl=1. For1=0,1, G and h are not
decomposed as defined, being coefficients of zero, and so should be consid-
ered to be zero. The same holds Fr,h$ whenl=0. Thus
69as=hagY ™ the gauge invariants cannot be constructed. However it is
convenient to use the same variab(&6)—(18) for all values
89ap=haY:p+heSy, (8 ofl. Forl=0,1, these variables are only partially IGI and so
gauge fixing is required. This does not affect the calculation
89ab="?K¥apY +1°GZap+2hSapy - (9  below.

To conclude this section, we point out the existence of a
The superscript&,O stand for even and odd respectively. preferred gauge in Which:G:hEZO_ This is the Regge-
Note thathag, {h5,hR} and{K,G,h} are respectively a \Wheeler(RW) gauge. This has the advantage that the bare
2-tensor, vectors and scalars Mif. A similar decomposition perturbations of Eqs7)—(9) match identically the 1GI per-
of the perturbation of the stress-energy tensor is made:  turbations.

Otas=AtasY, (10 IIl. NULL TETRADS AND WEYL SCALARS

Stap=AtEY.,+ALDS,, (11) It is convenient to introduce coordinate&=(6,¢,u,v)
on the spherically symmetric background, wjih=1-4 in

Stap=r2At3y,pY +12At*Z,,+ 2AtS 41y - the order shownu,v are null coordinates oM? which we

(120  take to increase into the future. Furthermore, we specify that
u,v are respectively retarded and advanced time coordinates,
In this caseAt,g, {At5, At} and{At3 At? At} are respec-  so thatu (respectively) labels the futurdérespectively past
tively a 2-tensor, vectors and scalars M. null cones of the axis =0. Then the background line ele-
A complete set of identification gauge invariant variablesment can be written as
is produced as follows. An infinitesmal coordinate transfor-

mation on the background is generated by a vector field ds?=—r?(u,v)dQ?+2e 2" dudy,
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where the only coordinate freedom corresponds to the reldhave an invariant meaning, we must choose the tetoad
beling u—U(u),v—V(v) of the spherical null cones. We more correctly, class of tetrads an invariant way, as was

introduce the null tetrad done above for the background.
The Weyl scalars are given by
— 1
m, [(5 +isings?), (19 Wo=C,,l*m'm? (27
; W1=C nol” m’I*n? (28)
m*=—(8L—isings?), (20)
N . V,=C, 00l “m'n*m* e, (29
n,=e 't (21) W3=C, ! “n"m* n?, (30)
=e '8, (22) W 4=C o NPm* nme 7. (31)
so that With our choice of background tetrad, we find that these
_ _ — —, yield
Our= 21 (uNy)—2M,my, . (23
8W o= 8C o1 *m1Pm?, (32)

Here and throughout, the overline indicates a background
guantity and the asterisk represents complex conjugation. _ L
With respect to this tetrad, there is only one nonvanishing 8V, =—a¥,+6C,,,\ 1 #m’1*n, (33
Weyl tensor component;

L SV ,=bW,+5C,, ), “m’n*m* e, (34)
@zz—2[2re2f(r,uU+rf,uv)—1—2e2fr,ur,v] -
6r 8W3=—cWy+ 5C,,,\ 1 “n"m* n7, (35)
1 1 _ v v
=g| Rty Har——(1+x) |, (24) 8 4= 8C M ' m* (36)
r

where
where [, is the d’Alembertian ofM, and y=g” rAr
Under general Lorentz transformations of the null tetrad this  g=m 6~ (37)
term is not invariant. However, due to spherical symmetry, .
there is an invariant class of null tetrads, namely that which
takes the two real members of the tetrad to be the repeated
principal null directions of the Weyl tenséthe ingoing and _
outgoing radial null directions Specifying that we always C=mZ ont. (39
do this, the only allowed Lorentz transformations are spin
boosts which involve The gauge invariance afV is demonstrated as follows.
. L L L (An identical argument applies fé,.) We see from above
|“>a%l*, n*—a’n*, mt—e?emt, (250 that this term depends only on the perturbed Weyl tensor and
on the background tetrad. Both these terms are fixed once the
wherea,w are arb|trary\1'2 is invariant under these trans- background and tetrad have been specified and the perturba-
formations. Henceforth, a null tetradn®,m*# n# 1%} for ~ tion has been added in any particular gauge. Tiysis a
the background will always be taken to lie in this class. With-TGI scalar. Then IGI follows from the Stewart-Walker
out loss of generality, we can always také to point in the ~€mma[l] (see also Sec. 1.6 of Rg20]) which we state in

dial ingoing null direction and® to point in the radial TS oM
radial ingoing nufl direction an 0 point in the radia Lemma 1. The linearized perturbation of a geometric
outgoing null direction.

We write a null tetrad of the perturbed space-time agiu@ntity Q with background value @ IGI if it satisfies

{m,m*,n, T}, with

b= n SlH41, L Ont— m Sm* #—m* L OMH, (38

L:Q=0
9ur=9ur™ 5guv:_2m(umt)+2|(un1/), (26) 2 e .
for all generators¢ of infinitesmal coordinate transforma-
where | ,=1,+6l, and similar for other tetrad members. tions of the background space-time .

The cond|t|on(26) is an underdetermined linear system for ~ This allows one to characterize all IGI quantities.

the perturbationsl , (etc) in terms of the metric perturba- ~ Lemma 2. The linearized perturbation of a geometric
tions, correspondmg to the gauge freedom of Lorentz transguantity Q with background value @& IGI if one of the
formations. In order that the Weyl scalars calculated belowfollowing holds:

044004-3



BRIEN C. NOLAN PHYSICAL REVIEW D 70, 044004 (2004

1) 6:0, (26). Furthermore, the parts @m,, not fixed by the choice
(2) 6 is a constant scalar of 41, do not make any contribution to the perturbed Weyl

. . L scalars(32)—(36). Thus subject to a choice of the IGI terms
(3) Sel:sk:r %%Ttse;[sant linear combination of products of Kro- ol ,on, (which is analogous to the choice of tetrad in the

Co - . . ) background, the perturbed Weyl scalars are TGl. When we
Lemma 1 is trivially satisfied by as it vanishes in the g u P y

background; hence full gauge invariance follows. As noted i mda?inl?etstﬁtfad thatl’, satisfies Corollary 1, we have our
the Introduction, it is onlyW, and ¥, which satisfy the

requirements of being both tetrad and identification gauge Pr.o_pos.ltlon 1.The perturbed'Wey_I scaley(§2)—(36) are
invariant. Gauge invariance of these terms has long bee entlflca'glon and tetrad gauge invariant with respect to odd
recognized and used; see e.g. Réfl]. The form of these perturbations

; - - . We can now calculate these gauge invariant terms. We
terms in GS variables has been given in REf8] and[11]. . .. ,
Equations(32)—(36) and (37)—(39) clearly rule out the repeat that two tetrad choices must be madewe specify

possibility of all the Weyl scalars being TGl in general. that the background tetrad uses the principal null directions

However if we consider odd and even perturbations sepz2S 1S real members an@) we must specify the gauge in-
P P variant termssl , ,6n,, . We note however thai¥, and 6V,

ratel me progr n made. wo : ) .
ately, some progress can be made depend only on the first choice. In fact the same is true for
A. Odd perturbations oV, using Eq.(26), we can show that
In an arbitrary gauge, we have,g= h§=G=K=O for b:—Ef‘V&gM.
odd perturbations. Infinitesmal co-ordinate transformations
of odd parity are generated by 1-form fields of the fqi).  Thus there is no contribution t6W, from the perturbed
We can write down an “odd perturbations only” version of tetrad.
the Stewart-Walker lemma: The most obvious gauge invariant choice for the pertur-

Lemma 3. The linearized perturbation of a geometric bation of the real members of the null tetraddg,= én,,
quantity Q with background value @ IGI with respect to  =0. Working in the RW gauge, we can then solve E2f)

odd perturbations if it satisfies for 6m,, ; as noted aboveany particular solution of this sys-
tem vyields the same Weyl scalars. Then we calculate the
L; Q=0 Weyl scalars, and to conclude, write these in terms of the IGI
© quantities of Sec. Il. The result is

for all generatorséq of infinitesmal coordinate transforma-
tions of odd parity of the background space-time SV = &VI_Bk (40)

The form (14) of these generators yields the following 07 52 AlB
useful result:

Corollary 1. Let SxP) and Tyg...c(xP) be respectively Qi , _ _
a scalar and a covariant tensor field on Mand define a oWy=—~1(r 1) a1 A= r_zkAIA : (41)
tensor field T,4..., on M* by padding out with zero§hen
both Sand T,..., are IGI with respect to odd perturba- SV,=Q,lI, (42
tions

Proof: Vanishing of the Lie derivative oS along &g, is Q¥ a4 _
immediate. Also, oWay=—= (r?11) an*— r—ZkAnA , (43
LigTapy= Tap oy bt Tupoat+ + Tap 80y Q

o —x—t
_ _ — oW ;= —n"nPkyg, (44)
:TaB-~-y,A§é+TaB~~-7§(a),a+'"+Taﬁ-~~a§%,y 4 r2 AlB
=0. where
Quantities of particular relevance to us that satisfy this H=eé(r‘2k5)|A

corollary are the background Weyl scatr, and the tetrad

membersl,n. Note that it is crucial that we consider the iS the scalar introduced in Ref2] which appears in the
tetrad members as 1-forms. Corollary 1 does not apply téhaster equations for odd perturbations. The angular coeffi-
contravariant tensor fields. Hence the perturbed quantitiegi€nts here are given by

al,, on, are IGI with respect to odd perturbation®ote
however thatl*, Sn* are not IGI) This allows us to make a
gauge invariant choice of the tetrad membkysn,, in the
perturbed space-time. This choice will strongly constrain, in Q.= Ewas (46)
a gauge invariant manner, the perturbatiofra, via Eg. ! a

Qo=— 2WaWbSa:b ) (45)

4
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Q=-ZI(1+1)Y,

(47)

wherew?=r~m2, We can now give an interpretation of the
gauge invariant metric perturbatidép based on these scalars
using the work of Szekerel22?]. The scalarsV,,V, are

independent of the choice of perturbation in the tetrad and so
depend only on our choice of background tetrad which, a

gIOI’lS

PHYSICAL REVIEW D 70, 044004 (2004

There are no vector fields* which are 1GI with respect to
even perturbations

Note that it possible to construct covariant tensor fields of
higher rank which are IGI by taking tensor products of the
1-forms described by the lemma.

Proof: The proof for the scalar case is immediate. In the
1-form case, the result follows by writing down the equa-

Lgv,=0. This equation must hold for affe with

argued above, may be considered to be invariant. Thus thegeform equivalents given by Eq13). We obtainu,=0 by
two terms represent pure transverse gravitational waveggnsidering particular forms of“. We also obtainu,

propagating in the radial inwar@espectively outwandnull
directions. We note that the formulé®0) and(44) have been
given previously in Ref[11].

Similarly, ¥, is independent of the choice of tetrad per-

=v_a(xb) and Y%y ,=0. Since we are in 2 dimensions and
Y3S,=0, this implies that we can write,=\(x?)S,. The
remaining conditions reduce to the linear partial differential

turbation. Thus this term invariantly describes a perturbatioffauation fork given in the statement.

of the Coulomb component of the gravitational field.

The scalarsl;, ¥ ; depend on the choice of tetrad pertur-

Unlike the corresponding situation for odd perturbations,
there is no hope of constructing useful gauge invariant back-

bation. However with our gauge invariant choice describedd™ound terms from the quantities described in this lemma. In
above, we can state that the relevant coefficients represef@rticular, it is not possible to use the 1-forms described in

pure longitudinal gravitational waves propagating in the ra

dial inward (respectively outwandnull directions.

We note that these statements are valid Ifer2. The
angular coefficienQQ, vanishes identically fot=1. Thus
the vanishing of the termé¥, and 6V, for | =1 is gauge

the lemma to construct some of the null tetrad members. This

is essentially because one cannot havexthgependence in
the gauge invariant terms. Thus we can summarize as fol-
lows.

Proposition 2. 5% and 6V, are the only perturbed Weyl

invariant (and of course entirely expected: we only expectS(falars that are identification. and tetrad gauge invariant
these gravitational radiation terms to switch on for the quadWith respect to even perturbations

rupole and higher momentsz2). Forl =1, I1 is IGI butka
is not so. HenceSWV, is gauge invariant, budW; and 5V 4
are not.

We note also that Eq$40)—(44) completely specify the

gauge invariant metric perturbation; that is, these equations

may be solved fok, in terms of 6¥,_,. In particular, van-

ishing of the perturbed Weyl scalars at a point of space-time

implies vanishing ok, at that point.

B. Even perturbations

For even perturbations, we g&f=h=0. Infinitesmal co-

For completeness, we give these terms which have been
given previously in Ref[11]:

1__
— 1 A1 BRag(WAWPY ),

N =
0 o2

(48)

1 "ARLB * ay, kb
oV ,= ?n N°Kag(W* 2W* Y gp). (49)

For the lowest multipole moments=0,1, the angular co-
efficients here vanish identically, and so the vanishing of

ordinate transformations of even parity are generated by¥o and oW, is gauge invariant.

1-forms of the form(13). The “even perturbations only”

version of Lemma 3 is immediate. The following result de-
scribes the terms additional to those described by Lemma 2

which become IGI when we restrict to even perturbations.

Lemma 4.Let a(x“) andv_ﬂ(x”) be respectively a scalar
and a 1-form defined on & Then the linear perturbations

of 6 and v_ﬂ are IGI with respect to even perturbations if

Q=0Q(x?) with
Y"Q.aY5=0,
v_Az 0 and
Va=\S,,
where) (xP) satisfies

YaY2\ pYP+ Y, (YAYP -SSP\ =0.

IV. CONCLUSIONS

We have investigated the possibility of giving a gauge
invariant physical interpretation of gauge invariant metric
perturbations of spherically symmetric space-times by con-
sidering the perturbed Weyl scalars. This turns out to be pos-
sible only for the case of odd perturbations; however in this
case, it transpires that all the perturbed Weyl scalars are iden-
tification and tetrad gauge invariant, and so the physical in-
terpretation of the metric terms can be made. One can there-
fore immediately see the contribution of a particular metric
perturbation to ingoing and outgoing longitudinal and trans-
verse gravitational waves, and to the Coulombic interaction
term. We anticipate that this will be of use in various differ-
ent studies, for example in our ongoing work on the stability
of Cauchy horizons in self-similar collapf23]. The expres-
sions (40)—(44) can be used to set coordinate independent
and gauge invariant boundary conditions for perturbations,
and can also be used as indicators of instability in different
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regimes(for example if such terms diverge in the approach 5P_1:|5‘\II05\]I4|1/2,
to a singularity or to a Cauchy horizprCare is needed here
however. While the term&t0)—(44) indicate the presence or
otherwise of various gravitational waves and Coulomb-type
perturbations, they should not be used to determine magni-
tudes. This is crucial in setting boundary conditions, where 6P, =|6W¥ 6V, 2,
one typically imposes a condition on the limiting behavior of

a physically significant quantity. This is because of the scaléy|| {hree provide terms useful for the analysis of odd pertur-
covariance in the scalars resulting from the spin bo@85  pations, while the first can also be used for even perturba-

under these Lorentz transformations, we have tions (and indeed in more general contej@s]).
5V, —a? "e¥,, n=0,...4.

5PO: 5‘1’2,

. . . . ACKNOWLEDGMENTS
[For convenience, we have set=0 in Eq.(25) as this will

not affect magnitudesHowever this shows that the follow- | thank Thomas Waters for useful conversations.
ing Gl first-order quantities have physically significant mag-This research was supported by Enterprise Ireland grant
nitudes, and so can be used for setting boundary condition&C/2001/199.

[1] J.M. Stewart and M. Walker, Proc. R. Soc. Londad41, 49 [12] G. Allen, K. Camarda, and E. Seidel, gr-qc/9806014.

(1974. [13] M. Siino, Prog. Theor. Phy€9, 1 (1998; Phys. Rev. D59,
[2] U.H. Gerlach and U.K. Sengupta, Phys. Rev.1B, 2268 064006(1999.

(1979. [14] H. Kodama, A. Ishibashi, and O. Seto, Phys. Rev.6R
[3] T. Harada, H. Iguchi, and M. Shibata, Phys. Re\6&) 024002 064022(2000.

(2003. [15] K. Tomita, Phys. Rev. [56, 3341(1997.
[4] K.H. Lockitch, J.L. Friedman, and N. Andersson, Phys. Rev. D16] A. Ishibashi and H. Ishihara, Phys. Rev.5B, 3446(1997.

68, 124010(2003. [17] K. Nakamura, Prog. Theor. Phy&10, 723 (2003.

[5] .M. Martin-Garcia and C. Gundlach, Phys. Rew64) 024012
(2002); C. Gundlach and J.M. Martin-Garcidnid. 61, 084024
(2000.

[6] D. Garfinkle, C. Gundlach, and J.M. Martin-Garcia, Phys. Rev.
D 59, 104012(1999.

[7] A.V. Frolov, Phys. Rev. 59, 104011(1999.

[8] J.M. Martin-Garcia and C. Gundlach, Phys. Re\6® 064031

[18] C. Moreno and O. Sarbach, Phys. Rev6) 024028(2003.

[19] O. Sarbach, M. Heusler, and O. Brodbeck, Phys. Re®2D
084001 (2000; O. Brodbeck, M. Heusler, and O. Sarbach,
Phys. Rev. Lett84, 3033(2000.

[20] J. Stewart, Advanced General RelativitfCambridge Univer-
sity Press, Cambridge, England, 1991

(1999. [21] S. Chandrasekhaffhe Mathematical Theory of Black Holes
[9] C. Gundlach, Phys. Rev. B7, 7075(1998. (Oxford University Press, New York, 1983
[10] H. Iguchi, T. Harada, and K.-I. Nakao, Prog. Theor. PHyl, [22] P. Szekeres, J. Math. Phy&. 1387 (1965.

1235(1999; 103 53 (2000. [23] B.C. Nolan and T.J. Waters, Phys. Rev6b, 104012(2002.
[11] O. Sarbach and M. Tiglio, Phys. Rev. @, 084016(2001). [24] C. Beetle and L.M. Burko, Phys. Rev. Le89, 271101(2002.

044004-6



