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Physical interpretation of gauge invariant perturbations of spherically symmetric space-times

Brien C. Nolan*
School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
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By calculating the Newman-Penrose Weyl tensor components of a perturbed spherically symmetric space-
time with respect to invariantly defined classes of null tetrads, we give a physical interpretation, in terms of
gravitational radiation, of odd parity gauge invariant metric perturbations. We point out how these gauge
invariants may be used in setting boundary and/or initial conditions in perturbation theory.
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I. INTRODUCTION

Perturbation theory in general relativity is complicated
the issue of coordinate freedom in the unperturbed ba

ground space-time (M ,ḡmn). If one formally adds a pertur

bation to the metricḡmn→gmn5ḡmn1hmn , it is not neces-
sarily true that one has moved to a different space-time:gmn

may be the metricḡmn written in a different coordinate sys
tem, which is related to the original coordinates by an in
nitesmal coordinate transformation. This is known as
identification gauge problem. The gauge freedom rep
sented by such infinitesmal coordinate transformations m
be dealt with carefully. One way to do this is to treat t
perturbation problem in hand using identification gauge
variant ~IGI! quantities@1#. For perturbations of sphericall
symmetric space-times, a complete set of such quantities
resenting metric and matter perturbations, and the co
sponding IGI perturbation equations, have been given
Gerlach and Sengupta~GS! @2#. We review their formalism
in Sec. II below.

This formalism has been applied in many different are
for example in studies of nonspherical stellar collapse@3–5#,
critical collapse@6–9#, phenomenology of naked singular
ties @10#, black holes@11–13#, cosmology@14–16#, nonlin-
ear perturbation theory@17# and perturbations of gauge field
@18,19#. These studies have generally extracted the phys
significance of the metric perturbations, e.g. by calculat
the radiated power of gravitational waves@10# or by making
the connection with the more familiar Regge-Wheeler-Zer
and Teukolsky perturbation formalisms@11#. Nevertheless, a
general and direct interpretation of the full set of IGI met
perturbations has not been given. The aim in the pres
paper is to attempt to do so by calculating the Newm
Penrose~NP! Weyl tensor components of the perturb
space-time. The type-N component, which represents tran
verse gravitational waves has previously been calculate
Refs.@10# and @11#. In carrying out this calculation, one en
counters another type of gauge problem, namely the free
of choice in the null tetrad of the perturbed space-time.

Stewart and Walker@1# discussed this additional gaug
invariance, and concluded that the only Weyl scalars that
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both IGI and tetrad gauge invariant~TGI! are the type-N
terms, and furthermore, that these terms can only be ga
invariant if the background is of Petrov typeD or confor-
mally flat. These include all spherically symmetric spac
times. ~We use the phrase ‘‘gauge invariant’’ to refer to
quantity which is both tetrad and identification gauge inva
ant.! Consequently, any attempt to attach physical sign
cance to the full set of perturbed Weyl scalars see
doomed. However, as we will see below, this is not the c
for odd perturbations~see Ref.@2# and Sec. II below!. In this
case, there is sufficient geometric information in the ba
ground that is invariant with respect to the generators of o
perturbations to enable the construction of gauge invar
perturbed Weyl scalars. This will allow the interpretation
the metric perturbations in terms of longitudinal and tran
verse waves propagating in the inward and outward ra
null directions of the spherically symmetric background a
in terms of a perturbation of the Coulombic interaction. As
the analysis of Ref.@1#, this will involve the choice of a
special class of tetrads, but one which admits an IGI desc
tion. We follow the curvature, tetrad and NP conventions
Ref. @20#.

II. GERLACH-SENGUPTA FORMALISM

For convenience, we give a brief review of the formalis
introduced by Gerlach and Sengupta@2#, following the pre-
sentation of Martin-Garcia and Gundlach@8#. The metric of a
spherically symmetric space-timeM4 can be written as

ds25gAB~xC!dxAdxB1r 2~xC!gabdxadxb, ~1!

wheregAB is a Lorentzian metric on a 2-dimensional man
fold with boundaryM2 andgab is the standard metric on th
unit 2-sphereS2. Capital Latin indices represent tensor ind
ces onM2, and lower case Latin indices are tensor indic
on S2. r (xC) is a scalar field onM2. 4-dimensional space
time indices will be given in Greek. The covariant deriv
tives onM4, M2 andS2 will be denoted by a semicolon,
vertical and a colon respectively.eAB andeab are covariantly
constant antisymmetric unit tensors with respect togAB and
gab . We define
©2004 The American Physical Society04-1
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vA5
r uA

r
, ~2!

V052
1

r 2
12vA

uA13vAvA . ~3!

Writing the stress-energy tensor as

tmndxmdxn5tAB~xC!dxAdxB1Q~xC!r 2gabdxadxb, ~4!

the Einstein equations of the spherically symmetric ba
ground read

GAB522~vAuB1vAvB!1V0gAB58ptAB , ~5!

1

2
Ga

a52R1vA
uA1vAvA58pQ, ~6!

whereGa
a5gabGab andR is the Gaussian curvature ofM2.

Spherical symmetry of the background allows us to
pand the perturbed metric tensor in terms of spherical h
monics. Writing Y5Yl

m and suppressing the indicesl ,m
throughout, we have the following bases for scalar, vec
and tensor harmonics respectively:$Y%, $YaªY:a ,Sa

ªea
bYb% and $Ygab ,ZabªYa:b1@ l ( l 11)/2#Ygab ,Sa:b

1Sb:a%. These are further classified depending on the tra
formation properties under spatial inversionxW→2xW : a
spherical harmonic with indexl is called even if it transforms
as (21)l and is called odd if it transforms as (21)l 11. In
the bases above,Y,Ya and Zab are even andSa ,S(a:b) are
odd.

The perturbationdgmn of the metric tensor can then b
decomposed as

dgAB5hABY, ~7!

dgAb5hA
EY:b1hA

OSb , ~8!

dgab5r 2KgabY1r 2GZab12hS(a:b) . ~9!

The superscriptsE,O stand for even and odd respective
Note that hAB , $hA

E ,hA
O% and $K,G,h% are respectively a

2-tensor, vectors and scalars onM2. A similar decomposition
of the perturbation of the stress-energy tensor is made:

dtAB5DtABY, ~10!

dtAb5DtA
EY:b1DtA

OSb , ~11!

dtab5r 2Dt3gabY1r 2Dt2Zab12DtS(a:b) .
~12!

In this case,DtAB , $DtA
E ,DtA

O% and$Dt3,Dt2,Dt% are respec-
tively a 2-tensor, vectors and scalars onM2.

A complete set of identification gauge invariant variab
is produced as follows. An infinitesmal coordinate transf
mation on the background is generated by a vector fieldjW .
04400
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Again, we can decompose into even and odd harmonics
consider separately the transformations generated by
1-form fields

jE5jA~xC!YdxA1jE~xC!Y:adxa, ~13!

jO5jOSadxa. ~14!

From the transformed versions of the metric perturbatio
one can construct combinations which are independent of
coefficients ofjW . These combinations are then identificatio
gauge invariant. Writing

pA5hA
E2

r 2

2
GuA , ~15!

a complete set of IGI metric perturbations is given by

kAB5hAB22p(AuB) , ~16!

kA5hA
O2huA12hvA , ~17!

k5K1
l ~ l 11!

2
G22vApA . ~18!

Similarly, a complete set of IGI stress-energy tensor per
bations may be constructed. We will not give these here,
refer the reader to Refs.@2# or @8#. The full set of IGI per-
turbation equations may also be found in these referen
we will not use these equations in the present paper.

An important point to note is that this formalism is incom
plete for l 50 and for l 51. For l 50,1, G and h are not
defined, being coefficients of zero, and so should be con
ered to be zero. The same holds forhA

E ,hA
O when l 50. Thus

the gauge invariants cannot be constructed. However
convenient to use the same variables~16!–~18! for all values
of l. For l 50,1, these variables are only partially IGI and
gauge fixing is required. This does not affect the calculat
below.

To conclude this section, we point out the existence o
preferred gauge in whichh5G5hA

E50. This is the Regge-
Wheeler~RW! gauge. This has the advantage that the b
perturbations of Eqs.~7!–~9! match identically the IGI per-
turbations.

III. NULL TETRADS AND WEYL SCALARS

It is convenient to introduce coordinatesxm5(u,f,u,v)
on the spherically symmetric background, withm51 –4 in
the order shown.u,v are null coordinates onM2 which we
take to increase into the future. Furthermore, we specify
u,v are respectively retarded and advanced time coordina
so thatu ~respectivelyv) labels the future~respectively past!
null cones of the axisr 50. Then the background line ele
ment can be written as

ds252r 2~u,v !dV212e22 f (u,v)dudv,
4-2
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where the only coordinate freedom corresponds to the r
beling u→U(u),v→V(v) of the spherical null cones. W
introduce the null tetrad

m̄m5
r

A2
~dm

1 1 i sinudm
2 !, ~19!

m̄m* 5
r

A2
~dm

1 2 i sinudm
2 !, ~20!

n̄m5e2 fdm
4 , ~21!

l̄ m5e2 fdm
3 , ~22!

so that

ḡmn52 l̄ (mn̄n)22m̄(mm̄n)* . ~23!

Here and throughout, the overline indicates a backgro
quantity and the asterisk represents complex conjugat
With respect to this tetrad, there is only one nonvanish
Weyl tensor component;

C̄25
1

6r 2
@2re2 f~r ,uv1r f ,uv!2122e2 f r ,ur ,v#

5
1

6 S R1
1

r
h2r 2

1

r 2
~11x!D , ~24!

where h2 is the d’Alembertian ofM2 and x5gABr ,Ar ,B .
Under general Lorentz transformations of the null tetrad, t
term is not invariant. However, due to spherical symme
there is an invariant class of null tetrads, namely that wh
takes the two real members of the tetrad to be the repe
principal null directions of the Weyl tensor~the ingoing and
outgoing radial null directions!. Specifying that we always
do this, the only allowed Lorentz transformations are s
boosts which involve

l̄ m→a2 l̄ m, n̄m→a2n̄m, m̄m→e2ivm̄m, ~25!

wherea,v are arbitrary.C̄2 is invariant under these trans
formations. Henceforth, a null tetrad$m̄m,m̄* m,n̄m, l̄ m% for
the background will always be taken to lie in this class. Wi
out loss of generality, we can always taken̄m to point in the
radial ingoing null direction andl̄ n to point in the radial
outgoing null direction.

We write a null tetrad of the perturbed space-time

$mW ,mW * ,nW , lW%, with

gmn5ḡmn1dgmn522m(mmn)* 12l (mnn), ~26!

where l m5 l̄ m1d l m and similar for other tetrad member
The condition~26! is an underdetermined linear system f
the perturbationsd l m ~etc.! in terms of the metric perturba
tions, corresponding to the gauge freedom of Lorentz tra
formations. In order that the Weyl scalars calculated be
04400
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have an invariant meaning, we must choose the tetrad~or
more correctly, class of tetrads! in an invariant way, as was
done above for the background.

The Weyl scalars are given by

C05Cmnlsl mmnl lms, ~27!

C15Cmnlsl mmnl lns, ~28!

C25Cmnlsl mmnnlm* s, ~29!

C35Cmnlsl mnnm* lns, ~30!

C45Cmnlsnmm* nnlm* s. ~31!

With our choice of background tetrad, we find that the
yield

dC05dCmnls l̄ mm̄n l̄ lm̄s, ~32!

dC152aC̄21dCmnls l̄ mm̄n l̄ ln̄s, ~33!

dC25bC̄21dCmnls l̄ mm̄nn̄lm̄* s, ~34!

dC352cC̄21dCmnls l̄ mn̄nm̄* ln̄s, ~35!

dC45dCmnlsn̄mm̄* nn̄lm̄* s, ~36!

where

a5m̄md l m, ~37!

b5n̄md l m1 l̄ mdnm2m̄mdm* m2m̄* mdmm, ~38!

c5m̄m* dnm. ~39!

The gauge invariance ofdC0 is demonstrated as follows
~An identical argument applies fordC4.! We see from above
that this term depends only on the perturbed Weyl tensor
on the background tetrad. Both these terms are fixed once
background and tetrad have been specified and the pertu
tion has been added in any particular gauge. ThusC0 is a
TGI scalar. Then IGI follows from the Stewart-Walke
lemma@1# ~see also Sec. 1.6 of Ref.@20#! which we state in
this form:

Lemma 1. The linearized perturbation of a geometr

quantity Q with background value Q¯ is IGI if it satisfies

LjWQ̄50

for all generatorsjW of infinitesmal coordinate transforma
tions of the background space-time.

This allows one to characterize all IGI quantities@1#.
Lemma 2. The linearized perturbation of a geometr

quantity Q with background value Q¯ is IGI if one of the
following holds:
4-3
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~1! Q̄50,
~2! Q̄ is a constant scalar,
~3! Q̄ is a constant linear combination of products of Kr

necker deltas.
Lemma 1 is trivially satisfied byC0 as it vanishes in the

background; hence full gauge invariance follows. As noted
the Introduction, it is onlyC0 and C4 which satisfy the
requirements of being both tetrad and identification ga
invariant. Gauge invariance of these terms has long b
recognized and used; see e.g. Ref.@21#. The form of these
terms in GS variables has been given in Refs.@10# and@11#.

Equations~32!–~36! and ~37!–~39! clearly rule out the
possibility of all the Weyl scalars being TGI in genera
However if we consider odd and even perturbations se
rately, some progress can be made.

A. Odd perturbations

In an arbitrary gauge, we havehAB5hA
E5G5K50 for

odd perturbations. Infinitesmal co-ordinate transformatio
of odd parity are generated by 1-form fields of the form~14!.
We can write down an ‘‘odd perturbations only’’ version
the Stewart-Walker lemma:

Lemma 3. The linearized perturbation of a geometr

quantity Q with background value Q¯ is IGI with respect to
odd perturbations if it satisfies

LjWO
Q̄50

for all generatorsjWO of infinitesmal coordinate transforma
tions of odd parity of the background space-time.

The form ~14! of these generators yields the followin
useful result:

Corollary 1. Let S̄(xD) and T̄AB•••C(xD) be respectively
a scalar and a covariant tensor field on M2 and define a

tensor field T̄ab•••g on M4 by padding out with zeros. Then

both S̄ and T̄ab•••g are IGI with respect to odd perturba
tions.

Proof: Vanishing of the Lie derivative ofS̄ along jWO is
immediate. Also,

LjWO
T̄ab•••g5T̄ab•••g,njO

n 1T̄nb•••gjO
n

,a1•••1T̄ab•••njO
n

,g

5T̄ab•••g,AjO
A1T̄ab•••gjO

a
,a1•••1T̄ab•••ajO

a
,g

50.

Quantities of particular relevance to us that satisfy t
corollary are the background Weyl scalarC̄2 and the tetrad
membersl̄ ,n̄. Note that it is crucial that we consider th
tetrad members as 1-forms. Corollary 1 does not apply
contravariant tensor fields. Hence the perturbed quant
d l m , dnm are IGI with respect to odd perturbations.~Note
however thatd l m,dnm are not IGI.! This allows us to make a
gauge invariant choice of the tetrad membersl m ,nm in the
perturbed space-time. This choice will strongly constrain
a gauge invariant manner, the perturbationsdmm via Eq.
04400
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~26!. Furthermore, the parts ofdmm not fixed by the choice
of d l m do not make any contribution to the perturbed We
scalars~32!–~36!. Thus subject to a choice of the IGI term
d l m ,dnm ~which is analogous to the choice of tetrad in t
background!, the perturbed Weyl scalars are TGI. When w
add in the fact thatC̄2 satisfies Corollary 1, we have ou
main result.

Proposition 1. The perturbed Weyl scalars~32!–~36! are
identification and tetrad gauge invariant with respect to o
perturbations.

We can now calculate these gauge invariant terms.
repeat that two tetrad choices must be made:~i! we specify
that the background tetrad uses the principal null directi
as its real members and~ii ! we must specify the gauge in
variant termsd l m ,dnm . We note however thatdC0 anddC4
depend only on the first choice. In fact the same is true
dC2: using Eq.~26!, we can show that

b52ḡmndgmn .

Thus there is no contribution todC2 from the perturbed
tetrad.

The most obvious gauge invariant choice for the pert
bation of the real members of the null tetrad isd l m5dnm
50. Working in the RW gauge, we can then solve Eq.~26!
for dmm ; as noted above,anyparticular solution of this sys-
tem yields the same Weyl scalars. Then we calculate
Weyl scalars, and to conclude, write these in terms of the
quantities of Sec. II. The result is

dC05
Q0

2r 2
l̄ A l̄ BkAuB , ~40!

dC15
Q1

r F ~r 2P! uAl̄ A2
4

r 2
kAl̄ AG , ~41!

dC25Q2P, ~42!

dC35
Q1*

r F ~r 2P! uAn̄A2
4

r 2
kAn̄AG , ~43!

dC45
Q0*

2r 2
n̄An̄BkAuB , ~44!

where

P5eB
A~r 22kB! uA

is the scalar introduced in Ref.@2# which appears in the
master equations for odd perturbations. The angular co
cients here are given by

Q0522wawbSa:b , ~45!

Q152
1

4
waSa , ~46!
4-4
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Q252
i

4
l ~ l 11!Y, ~47!

wherewa5r 21m̄a. We can now give an interpretation of th
gauge invariant metric perturbationkA based on these scala
using the work of Szekeres@22#. The scalarsC0 ,C4 are
independent of the choice of perturbation in the tetrad and
depend only on our choice of background tetrad which,
argued above, may be considered to be invariant. Thus t
two terms represent pure transverse gravitational wa
propagating in the radial inward~respectively outward! null
directions. We note that the formulas~40! and~44! have been
given previously in Ref.@11#.

Similarly, C2 is independent of the choice of tetrad pe
turbation. Thus this term invariantly describes a perturbat
of the Coulomb component of the gravitational field.

The scalarsC1 ,C3 depend on the choice of tetrad pertu
bation. However with our gauge invariant choice describ
above, we can state that the relevant coefficients repre
pure longitudinal gravitational waves propagating in the
dial inward ~respectively outward! null directions.

We note that these statements are valid forl>2. The
angular coefficientQ0 vanishes identically forl 51. Thus
the vanishing of the termsdC0 anddC4 for l 51 is gauge
invariant ~and of course entirely expected: we only expe
these gravitational radiation terms to switch on for the qu
rupole and higher moments,l>2). Forl 51, P is IGI butkA
is not so. HencedC2 is gauge invariant, butdC1 anddC3
are not.

We note also that Eqs.~40!–~44! completely specify the
gauge invariant metric perturbation; that is, these equat
may be solved forkA in terms ofdC124. In particular, van-
ishing of the perturbed Weyl scalars at a point of space-t
implies vanishing ofkA at that point.

B. Even perturbations

For even perturbations, we sethA
O5h50. Infinitesmal co-

ordinate transformations of even parity are generated
1-forms of the form~13!. The ‘‘even perturbations only’
version of Lemma 3 is immediate. The following result d
scribes the terms additional to those described by Lemm
which become IGI when we restrict to even perturbation

Lemma 4.Let Q̄(xm) and v̄m(xn) be respectively a scala
and a 1-form defined on M4. Then the linear perturbations

of Q̄ and v̄m are IGI with respect to even perturbations

Q̄5Q̄(xa) with

gabQ̄,aYb50,

v̄A50 and

v̄a5lSa ,

wherel(xb) satisfies

YaYal ,bYb1Ya:b~YaYb2SaSb!l50.
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There are no vector fieldsv̄m which are IGI with respect to
even perturbations.

Note that it possible to construct covariant tensor fields
higher rank which are IGI by taking tensor products of t
1-forms described by the lemma.

Proof: The proof for the scalar case is immediate. In t
1-form case, the result follows by writing down the equ
tions LjWE

v̄m50. This equation must hold for alljWE with

1-form equivalents given by Eq.~13!. We obtainv̄A50 by
considering particular forms ofjm. We also obtainv̄a

5 v̄a(xb) and Yav̄a50. Since we are in 2 dimensions an
YaSa50, this implies that we can writev̄a5l(xb)Sa . The
remaining conditions reduce to the linear partial different
equation forl given in the statement.

Unlike the corresponding situation for odd perturbation
there is no hope of constructing useful gauge invariant ba
ground terms from the quantities described in this lemma
particular, it is not possible to use the 1-forms described
the lemma to construct some of the null tetrad members. T
is essentially because one cannot have anyxA dependence in
the gauge invariant terms. Thus we can summarize as
lows.

Proposition 2.dC0 anddC4 are the only perturbed Wey
scalars that are identification and tetrad gauge invaria
with respect to even perturbations.

For completeness, we give these terms which have b
given previously in Ref.@11#:

dC05
1

2r 2
l̄ A l̄ BkAB~wawbY:ab!, ~48!

dC45
1

2r 2
n̄An̄BkAB~w* aw* bY:ab!. ~49!

For the lowest multipole momentsl 50,1, the angular co-
efficients here vanish identically, and so the vanishing
dC0 anddC4 is gauge invariant.

IV. CONCLUSIONS

We have investigated the possibility of giving a gau
invariant physical interpretation of gauge invariant met
perturbations of spherically symmetric space-times by c
sidering the perturbed Weyl scalars. This turns out to be p
sible only for the case of odd perturbations; however in t
case, it transpires that all the perturbed Weyl scalars are id
tification and tetrad gauge invariant, and so the physical
terpretation of the metric terms can be made. One can th
fore immediately see the contribution of a particular met
perturbation to ingoing and outgoing longitudinal and tran
verse gravitational waves, and to the Coulombic interact
term. We anticipate that this will be of use in various diffe
ent studies, for example in our ongoing work on the stabi
of Cauchy horizons in self-similar collapse@23#. The expres-
sions ~40!–~44! can be used to set coordinate independ
and gauge invariant boundary conditions for perturbatio
and can also be used as indicators of instability in differ
4-5
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regimes~for example if such terms diverge in the approa
to a singularity or to a Cauchy horizon!. Care is needed her
however. While the terms~40!–~44! indicate the presence o
otherwise of various gravitational waves and Coulomb-ty
perturbations, they should not be used to determine ma
tudes. This is crucial in setting boundary conditions, wh
one typically imposes a condition on the limiting behavior
a physically significant quantity. This is because of the sc
covariance in the scalars resulting from the spin boosts~25!:
under these Lorentz transformations, we have

dCn→a22ndCn , n50, . . . ,4.

@For convenience, we have setv50 in Eq. ~25! as this will
not affect magnitudes.# However this shows that the follow
ing GI first-order quantities have physically significant ma
nitudes, and so can be used for setting boundary conditi
. D

ev

04400
e
i-

e
f
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dP215udC0dC4u1/2,

dP05dC2 ,

dP15udC1dC3u1/2.

All three provide terms useful for the analysis of odd pert
bations, while the first can also be used for even pertur
tions ~and indeed in more general contexts@24#!.
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