22 research outputs found

    Polarized x-ray absorption spectra of CuGeO3 at the Cu and Ge K edges

    Full text link
    Polarized x-ray absorption near edge structure (XANES) spectra at both the Cu and the Ge K-edges of CuGeO3 are measured and calculated relying on the real-space multiple-scattering formalism within a one-electron approach. The polarization components are resolved not only in the unit cell coordinate system but also in a local frame attached to the nearest neighborhood of the photoabsorbing Cu atom. In that way, features which resist a particular theoretical description can be identified. We have found that it is the out-of-CuO4-plane p_{z'} component which defies the one-electron calculation based on the muffin-tin potential. For the Ge K-edge XANES, the agreement between the theory and the experiment appears to be better for those polarization components which probe more compact local surroundings than for those which probe regions with lower atomic density. Paper published in Phys. Rev. B 66, 155119 (2002) and available on-line at http://link.aps.org/abstract/PRB/v66/e155119.Comment: 15 pages, 6 figures. Published in Physical Review B, abstract available on-line at http://link.aps.org/abstract/PRB/e15511

    Yeast Two-Hybrid: State of the Art

    Get PDF
    Genome projects are approaching completion and are saturating sequence databases. This paper discusses the role of the two-hybrid system as a generator of hypotheses. Apart from this rather exhaustive, financially and labour intensive procedure, more refined functional studies can be undertaken. Indeed, by making hybrids of two-hybrid systems, customised approaches can be developed in order to attack specific function-related problems. For example, one could set-up a "differential" screen by combining a forward and a reverse approach in a three-hybrid set-up. Another very interesting project is the use of peptide libraries in two-hybrid approaches. This could enable the identification of peptides with very high specificity comparable to "real" antibodies. With the technology available, the only limitation is imagination
    corecore