1,135 research outputs found

    Matching functions for heavy particles

    Get PDF
    We introduce matching functions as a means of summing heavy-quark logarithms to any order. Our analysis is based on Witten's approach, where heavy quarks are decoupled one at a time in a mass-independent renormalization scheme. The outcome is a generalization of the matching conditions of Bernreuther and Wetzel: we show how to derive closed formulas for summed logarithms to any order, and present explicit expressions for leading order and next-to-leading order contributions. The decoupling of heavy quarks in theories lacking asymptotic freedom is also considered.Comment: Revised version to be published in Physical Review D; added section with application to decoupling of heavy particles in non-asymptotically free theorie

    Finite size scaling in the 2D XY-model and generalized universality

    Full text link
    In recent works (BHP), a generalized universality has been proposed, linking phenomena as dissimilar as 2D magnetism and turbulence. To test these ideas, we performed a MC study of the 2D XY-model. We found that the shape of the probability distribution function for the magnetization M is non Gaussian and independent of the system size --in the range of the lattice sizes studied-- below the Kosterlitz-Thoules temperature. However, the shape of these distributions does depend on the temperature, contrarily to the BHP's claim. This behavior is successfully explained by using an extended finite-size scaling analysis and the existence of bounds for M.Comment: 7 pages, 5 figures. Submitted to Phys. Rev. Lett. Details of changes: 1. We emphasized in the abstract the range of validity of our results. 2. In the last paragraph the temperature dependence of the PDF was slightly re-formulate

    Dynamics of false vacuum bubbles in Brans-Dicke theory

    Full text link
    We study the dynamics of false vacuum bubbles in the Brans-Dicke theory of gravity by using the thin shell or thin wall approximation. We consider a false vacuum bubble that has a different value for the Brans-Dicke field between the inside false vacuum region and the outside true vacuum region. Within a certain limit of field values, the difference of field values makes the effective tension of the shell negative. This allows new expanding false vacuum bubbles to be seen by the outside observer, which are disallowed in Einstein gravity.Comment: 29 pages, 20 figure

    Stochastic magnetohydrodynamic turbulence in space dimensions d2d\ge 2

    Full text link
    Interplay of kinematic and magnetic forcing in a model of a conducting fluid with randomly driven magnetohydrodynamic equations has been studied in space dimensions d2d\ge 2 by means of the renormalization group. A perturbative expansion scheme, parameters of which are the deviation of the spatial dimension from two and the deviation of the exponent of the powerlike correlation function of random forcing from its critical value, has been used in one-loop approximation. Additional divergences have been taken into account which arise at two dimensions and have been inconsistently treated in earlier investigations of the model. It is shown that in spite of the additional divergences the kinetic fixed point associated with the Kolmogorov scaling regime remains stable for all space dimensions d2d\ge 2 for rapidly enough falling off correlations of the magnetic forcing. A scaling regime driven by thermal fluctuations of the velocity field has been identified and analyzed. The absence of a scaling regime near two dimensions driven by the fluctuations of the magnetic field has been confirmed. A new renormalization scheme has been put forward and numerically investigated to interpolate between the ϵ\epsilon expansion and the double expansion.Comment: 12 pages, 4 figure

    Critical scaling of the a.c. conductivity for a superconductor above Tc

    Full text link
    We consider the effects of critical superconducting fluctuations on the scaling of the linear a.c. conductivity, \sigma(\omega), of a bulk superconductor slightly above Tc in zero applied magnetic field. The dynamic renormalization- group method is applied to the relaxational time-dependent Ginzburg-Landau model of superconductivity, with \sigma(\omega) calculated via the Kubo formula to O(\epsilon^{2}) in the \epsilon = 4 - d expansion. The critical dynamics are governed by the relaxational XY-model renormalization-group fixed point. The scaling hypothesis \sigma(\omega) \sim \xi^{2-d+z} S(\omega \xi^{z}) proposed by Fisher, Fisher and Huse is explicitly verified, with the dynamic exponent z \approx 2.015, the value expected for the d=3 relaxational XY-model. The universal scaling function S(y) is computed and shown to deviate only slightly from its Gaussian form, calculated earlier. The present theory is compared with experimental measurements of the a.c. conductivity of YBCO near Tc, and the implications of this theory for such experiments is discussed.Comment: 16 pages, submitted to Phys. Rev.

    Coordinate Representation of the One-Spinon One-Holon Wavefunction and Spinon-Holon Interaction

    Full text link
    By deriving and studying the coordinate representation for the one-spinon one-holon wavefunction we show that spinons and holons in the supersymmetric tJt - J model with 1/r21/r^2 interaction attract each other. The interaction causes a probability enhancement in the one-spinon one-holon wavefunction at short separation between the particles. We express the hole spectral function for a finite lattice in terms of the probability enhancement, given by the one-spinon one-holon wavefunction at zero separation. In the thermodynamic limit, the spinon-holon attraction turns into the square-root divergence in the hole spectral function.Comment: 20 pages, 3 .eps figure

    A new non-Fermi liquid fixed point

    Full text link
    We study a new exchange interaction in which the conduction electrons with pseudo spin Sc=3/2S_c=3/2 interact with the impurity spin SI=1/2S_I=1/2. Due to the overscreening of the impurity spin by higher conduction electron spin, a new non-trivial intermediate coupling strength fixed point is realized. Using the numerical renormalization group (NRG), we show that the low-energy spectra are described by a non-Fermi liquid excitation spectrum. A conformal field theory analysis is compared with NRG results and excellent agreement is obtained. Using the double fusion rule to generate the operator spectrum with the conformal theory, we find that the specific heat coefficient and magnetic susceptibility will diverge as T2/3T^{-2/3}, that the scaling dimension of an applied magnetic field is 5/65/6, and that exchange anisotropy is always relevant. We discuss the possible relevance of our work to two-level system Kondo materials and dilute cerium alloys, and we point out a paradox in understanding the Bethe-Ansatz solutions to the multichannel Kondo model.Comment: Revised. 20 page

    Hidden non-Fermi liquid behavior due to crystal field quartet

    Full text link
    We study a realistic Kondo model for crystal field quartet ground states having magnetic and non-magnetic (quadrupolar) exchange couplings with conduction electrons, using the numerical renormalization group method. We focus on a local effect dependent on singlet excited states coupled to the quartet, which reduces the non-magnetic coupling significantly and drives non-Fermi liquid behavior observed in the calculated quadrupolar susceptibility. A crossover from the non-Fermi liquid state to the Fermi liquid state is characterized by a small energy scale very sensitive to the non-magnetic coupling. On the other hand, the Kondo temperature observed in the magnetic susceptibility is less sensitive. The different crystal-field dependence of the two exchange couplings may be related to the different xx dependence of quadrupolar and magnetic ordering temperatures in Cex_xLa1x_{1-x}B6_6.Comment: 7 pages, 5 EPS figures, REVTe

    Decay constants, light quark masses and quark mass bounds from light quark pseudoscalar sum rules

    Get PDF
    The flavor udud and usus pseudoscalar correlators are investigated using families of finite energy sum rules (FESR's) known to be very accurately satisfied in the isovector vector channel. It is shown that the combination of constraints provided by the full set of these sum rules is sufficiently strong to allow determination of both the light quark mass combinations mu+mdm_u+m_d, ms+mum_s+m_u and the decay constants of the first excited pseudoscalar mesons in these channels. The resulting masses and decay constants are also shown to produce well-satisfied Borel transformed sum rules, thus providing non-trivial constraints on the treatment of direct instanton effects in the FESR analysis. The values of mu+mdm_u+m_d and ms+mum_s+m_u obtained are in good agreement with the values implied by recent hadronic τ\tau decay analyses and the ratios obtained from ChPT. New light quark mass bounds based on FESR's involving weight functions which strongly suppress spectral contributions from the excited resonance region are also presented.Comment: 28 pages, 10 figure

    Magnetic Oscillations in Dense Cold Quark Matter with Four-Fermion Interactions

    Get PDF
    The phase structures of Nambu-Jona-Lasinio models with one or two flavours have been investigated at non-zero values of μ\mu and HH, where HH is an external magnetic field and μ\mu is the chemical potential. In the phase portraits of both models there arise infinitely many massless chirally symmetric phases, as well as massive ones with spontaneously broken chiral invariance, reflecting the existence of infinitely many Landau levels. Phase transitions of first and second orders and a lot of tricritical points have been shown to exist in phase diagrams. In the massless case, such a phase structure leads unavoidably to the standard van Alphen-de Haas magnetic oscillations of some thermodynamical quantities, including magnetization, pressure and particle density. In the massive case we have found an oscillating behaviour not only for thermodynamical quantities, but also for a dynamical quantity as the quark mass. Besides, in this case we have non-standard, i.e. non-periodic, magnetic oscillations, since the frequency of oscillations is an HH-dependent quantity.Comment: latex, 29 pages, 8 figure
    corecore