11 research outputs found

    Chaplygin ball over a fixed sphere: explicit integration

    Full text link
    We consider a nonholonomic system describing a rolling of a dynamically non-symmetric sphere over a fixed sphere without slipping. The system generalizes the classical nonholonomic Chaplygin sphere problem and it is shown to be integrable for one special ratio of radii of the spheres. After a time reparameterization the system becomes a Hamiltonian one and admits a separation of variables and reduction to Abel--Jacobi quadratures. The separating variables that we found appear to be a non-trivial generalization of ellipsoidal (spheroconical) coordinates on the Poisson sphere, which can be useful in other integrable problems. Using the quadratures we also perform an explicit integration of the problem in theta-functions of the new time.Comment: This is an extended version of the paper to be published in Regular and Chaotic Dynamics, Vol. 13 (2008), No. 6. Contains 20 pages and 2 figure

    Search for multimessenger sources of gravitational waves and high-energy neutrinos with Advanced LIGO during its first observing run, ANTARES, and IceCube

    No full text
    Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes
    corecore