389 research outputs found
Renormalized Poincar\'e algebra for effective particles in quantum field theory
Using an expansion in powers of an infinitesimally small coupling constant
, all generators of the Poincar\'e group in local scalar quantum field
theory with interaction term are expressed in terms of annihilation
and creation operators and that result from a
boost-invariant renormalization group procedure for effective particles. The
group parameter is equal to the momentum-space width of form factors
that appear in vertices of the effective-particle Hamiltonians, . It
is verified for terms order 1, , and , that the calculated generators
satisfy required commutation relations for arbitrary values of .
One-particle eigenstates of are shown to properly transform under
all Poincar\'e transformations. The transformations are obtained by
exponentiating the calculated algebra. From a phenomenological point of view,
this study is a prerequisite to construction of observables such as spin and
angular momentum of hadrons in quantum chromodynamics.Comment: 17 pages, 5 figure
Boost-Invariant Running Couplings in Effective Hamiltonians
We apply a boost-invariant similarity renormalization group procedure to a
light-front Hamiltonian of a scalar field phi of bare mass mu and interaction
term g phi^3 in 6 dimensions using 3rd order perturbative expansion in powers
of the coupling constant g. The initial Hamiltonian is regulated using momentum
dependent factors that approach 1 when a cutoff parameter Delta tends to
infinity. The similarity flow of corresponding effective Hamiltonians is
integrated analytically and two counterterms depending on Delta are obtained in
the initial Hamiltonian: a change in mu and a change of g. In addition, the
interaction vertex requires a Delta-independent counterterm that contains a
boost invariant function of momenta of particles participating in the
interaction. The resulting effective Hamiltonians contain a running coupling
constant that exhibits asymptotic freedom. The evolution of the coupling with
changing width of effective Hamiltonians agrees with results obtained using
Feynman diagrams and dimensional regularization when one identifies the
renormalization scale with the width. The effective light-front Schroedinger
equation is equally valid in a whole class of moving frames of reference
including the infinite momentum frame. Therefore, the calculation described
here provides an interesting pattern one can attempt to follow in the case of
Hamiltonians applicable in particle physics.Comment: 24 pages, LaTeX, included discussion of finite x-dependent
counterterm
Biological diversity in an Islamic archaeological population: A radiogenic strontium isotope and craniometric analysis of affinity in Ottoman Romania
Objectives: Written accounts, as well as a previous craniometric study, indicate that migrations of non-Europeans and conversions of Europeans to Islam define Ottoman communities in Early Modern Europe. What is less clear are the roles of migration and admixture in generating intra-communal variation. This study combines craniometric with strontium isotope data to compare the cranial affinities of locally born and immigrant individuals. We predict that locally born individuals are more likely than non-locals to show evidence of admixture. Materials and Methods: Radiogenic strontium isotope data for 21 Ottomans were compared against archaeological faunal values. Sixteen individuals with intact crania were also measured and compared against two comparative source populations from Anatolia and Europe. Discriminant function analysis assigned unclassified Ottoans to either comparative group based on typicality probabilities, with potential admixture established via intermediate morphology between the two source populations. Results: Strontium isotope values revealed relatively high proportions of non-locals, consistent with high mobility documented historically. The sexes differed, with more males classifying as “typically Anatolian” than females. Locals and non-locals also had different cranial affinity patterns, with most classifying either as “typically Anatolian” or “typically European.” Contrary to expectation, none of the locals were identified as intermediate, suggesting admixture rates were relatively low. Conclusions: Consistent with historical records, the results revealed high levels of extra-regional migration, with most individuals identifiable as either typically Anatolian or European. Moreover, locals and non-locals differed craniometrically, with no signs of admixture between Anatolian migrants and European converts in locals. This suggests intra-communal divisions were maintained
Data Analysis Challenges for the Einstein Telescope
The Einstein Telescope is a proposed third generation gravitational wave
detector that will operate in the region of 1 Hz to a few kHz. As well as the
inspiral of compact binaries composed of neutron stars or black holes, the
lower frequency cut-off of the detector will open the window to a number of new
sources. These will include the end stage of inspirals, plus merger and
ringdown of intermediate mass black holes, where the masses of the component
bodies are on the order of a few hundred solar masses. There is also the
possibility of observing intermediate mass ratio inspirals, where a stellar
mass compact object inspirals into a black hole which is a few hundred to a few
thousand times more massive. In this article, we investigate some of the data
analysis challenges for the Einstein Telescope such as the effects of increased
source number, the need for more accurate waveform models and the some of the
computational issues that a data analysis strategy might face.Comment: 18 pages, Invited review for Einstein Telescope special edition of
GR
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
Sedimentation record in the Konkan-Kerala Basin: implications for the evolution of the Western Ghats and the Western Indian passive margin
The Konkan and Kerala Basins constitute a major depocentre for sediment from the onshore hinterland of Western India and as such provide a valuable record of the timing and magnitude of Cenozoic denudation along the continental margin. This paper presents an analysis of sedimentation in the Konkan-Kerala Basin, coupledwith a mass balance study, and numerical modelling of flexural responses to onshore denudational unloading and o¡shore sediment loading in order to test competing conceptual models for the development of high-elevation passive margins. The Konkan-Kerala Basin contains an estimated 109,000 km<sup>3</sup>; of Cenozoic clastic sediment, a volume difficult to reconcile with the denudation of a downwarped rift flank onshore, and more consistent with denudation of an elevated rift flank. We infer from modelling of the isostatic response of the lithosphere to sediment loading offshore and denudation onshore that flexure is an important component in the development of the Western Indian Margin.There is evidence for two major pulses in sedimentation: an early phase in the Palaeocene, and a second beginning in the Pliocene. The Palaeocene increase in sedimentation can be interpreted in terms of a denudational response to the rifting between India and the Seychelles, whereas the mechanism responsible for the Pliocene pulse is more enigmatic
Special relativity constraints on the effective constituent theory of hybrids
We consider a simplified constituent model for relativistic
strong-interaction decays of hybrid mesons. The model is constructed using
rules of renormalization group procedure for effective particles in light-front
quantum field theory, which enables us to introduce low-energy phenomenological
parameters. Boost covariance is kinematical and special relativity constraints
are reduced to the requirements of rotational symmetry. For a hybrid meson
decaying into two mesons through dissociation of a constituent gluon into a
quark-anti-quark pair, the simplified constituent model leads to a rotationally
symmetric decay amplitude if the hybrid meson state is made of a constituent
gluon and a quark-anti-quark pair of size several times smaller than the
distance between the gluon and the pair, as if the pair originated from one
gluon in a gluonium state in the same effective theory.Comment: 11 pages, 5 figure
Multicomponent theory of buoyancy instabilities in magnetized plasmas: The case of magnetic field parallel to gravity
We investigate electromagnetic buoyancy instabilities of the electron-ion
plasma with the heat flux based on not the magnetohydrodynamic (MHD) equations,
but using the multicomponent plasma approach when the momentum equations are
solved for each species. We consider a geometry in which the background
magnetic field, gravity, and stratification are directed along one axis. The
nonzero background electron thermal flux is taken into account. Collisions
between electrons and ions are included in the momentum equations. No
simplifications usual for the one-fluid MHD-approach in studying these
instabilities are used. We derive a simple dispersion relation, which shows
that the thermal flux perturbation generally stabilizes an instability for the
geometry under consideration. This result contradicts to conclusion obtained in
the MHD-approach. We show that the reason of this contradiction is the
simplified assumptions used in the MHD analysis of buoyancy instabilities and
the role of the longitudinal electric field perturbation which is not captured
by the ideal MHD equations. Our dispersion relation also shows that the medium
with the electron thermal flux can be unstable, if the temperature gradients of
ions and electrons have the opposite signs. The results obtained can be applied
to the weakly collisional magnetized plasma objects in laboratory and
astrophysics.Comment: Accepted for publication in Astrophysics & Space Scienc
Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation
We propose a theory which deals with the structure and interactions of volume
elements in liquid helium II. The approach consists of two nested models linked
via parametric space. The short-wavelength part describes the interior
structure of the fluid element using a non-perturbative approach based on the
logarithmic wave equation; it suggests the Gaussian-like behaviour of the
element's interior density and interparticle interaction potential. The
long-wavelength part is the quantum many-body theory of such elements which
deals with their dynamics and interactions. Our approach leads to a unified
description of the phonon, maxon and roton excitations, and has noteworthy
agreement with experiment: with one essential parameter to fit we reproduce at
high accuracy not only the roton minimum but also the neighboring local maximum
as well as the sound velocity and structure factor.Comment: 9 pages, 6 figure
Threshold criterion for wetting at the triple point
Grand canonical simulations are used to calculate adsorption isotherms of
various classical gases on alkali metal and Mg surfaces. Ab initio adsorption
potentials and Lennard-Jones gas-gas interactions are used. Depending on the
system, the resulting behavior can be nonwetting for all temperatures studied,
complete wetting, or (in the intermediate case) exhibit a wetting transition.
An unusual variety of wetting transitions at the triple point is found in the
case of a specific adsorption potential of intermediate strength. The general
threshold for wetting near the triple point is found to be close to that
predicted with a heuristic model of Cheng et al. This same conclusion was drawn
in a recent experimental and simulation study of Ar on CO_2 by Mistura et al.
These results imply that a dimensionless wetting parameter w is useful for
predicting whether wetting behavior is present at and above the triple
temperature. The nonwetting/wetting crossover value found here is w circa 3.3.Comment: 15 pages, 8 figure
- …