14 research outputs found

    Control of avian mycoplasmoses by vaccination

    No full text

    Immune responses to vaccination and infection with Mycoplasma gallisepticum

    No full text
    Infection with Mycoplasma gallisepticum induces severe lymphoproliferative lesions in multiple sites along the respiratory tract in chickens and turkeys. These immunopathological responses have been well-characterized in chickens, but have not been studied closely in turkeys. The aim of the study described here was to examine the immune responses of turkeys after live vaccination and infection with M. gallisepticum. In a strain comparison study, the mean log10antibody titre of birds exposed to an aerosol culture of M. gallisepticum strain Ap3AS was found to be significantly higher at day 14 than that of birds exposed to strain 100809/31. In a dose–response study, there was a significant difference in the mean log10antibody titre between birds exposed to mycoplasma broth and birds exposed to the highest dose of strain Ap3AS at day 7 after exposure. Immunohistochemical analysis of the tracheal mucosa and the air sacs revealed similar patterns of distribution of CD4+and CD8+lymphocytes to those seen in the tracheal mucosa of chickens, implicating these cell types in the pathogenesis of respiratory mycoplasmosis in turkeys. Turkeys that had been vaccinated with M. gallisepticum GapA+ts-11 had significantly higher antibody titres than unvaccinated birds at both 7 and 14 days after challenge with strain Ap3AS. Vaccination with GapA+ts-11 protected against the lymphoproliferative response to infection with virulent M. gallisepticum in both the tracheal mucosa and the air sacs, suggesting that this strain may be a useful vaccine candidate for use in turkeys

    High-resolution electrophoretic procedures for the identification of five Eimeria species from chickens, and detection of population variation

    No full text
    To overcome limitations of conventional approaches for the identification of Eimeria species of chickens, we have established high resolution electrophoretic procedures using genetic markers in ribosomal DNA. The first and second internal transcribed spacer (ITS-1 and ITS-2) regions of ribosomal DNA were amplified by polymerase chain reaction (PCR) from genomic DNA samples representing five species of Eimeria (E. acervulina, E. brunetti, E. maxima, E. necatrix and E. tenella), denatured and then subjected to denaturing polyacrylamide gel electrophoresis (D-PAGE) or single-strand conformation polymorphism (SSCP) analysis. Differences in D-PAGE profiles for both the ITS-1 and ITS-2 fragments (combined with an apparent lack of variation within individual species) enabled the unequivocal identification of the five species, and SSCP allowed the detection of population variation between some isolates representing E. acervulina, which remained undetected by D-PAGE. The establishment of these approaches has important implications for controlling the purity of laboratory lines of Eimeria, for diagnosis and for studying the epidemiology of coccidiosis

    Single-strand restriction fragment length polymorphism analysis of the second internal transcribed spacer (ribosomal DNA) for six species of Eimeria from chickens in Australia

    No full text
    Species of Eimeria from chickens from Australia were characterised using a polymerase chain reaction-linked restriction fragment length polymorphism (PCR-RFLP) approach. The ribosomal DNA region spanning the second internal transcribed spacer (ITS-2) was amplified from genomic DNA by PCR, digested separately with three restriction endonucleases (CfoI, Sau3AI and TaqI) and the fragments separated by denaturing gel electrophoresis. The PCR products amplified from the six species varied from ∼70 to 620 bp on agarose gels, with differences in size and number of bands among species, but no apparent variation within a species. The PCR-RFLP analysis of ITS-2 amplicons on denaturing gels gave characteristic profiles for individual species (except for minor variation in profiles within some species). The results indicate that ITS-2 contains useful genetic markers for the identification of six Eimeria species occurring in Australia

    The organisation of the multigene family which encodes the major cell surface protein, pMGA, of Mycoplasma gallisepticum

    Get PDF
    AbstractThe genome of the avian pathogen Mycoplasma gallisepticum contains a number of related genes for putative adhesion molecules (pMGA). Cloning and sequence analysis of several pMGA genes suggested that all of them might be transcriptionally and translationally functional. Analysis of the gene sequence encoding the sole pMGA variant expressed in vitro in the S6 strain (pMGA1.1) revealed no unambiguous feature that could account for its unique expression. It is estimated that the pMGA gene family may contain up to 50 members, and its possible role is discussed herein
    corecore