2 research outputs found

    Study of self-alignment of μBGA packages

    Get PDF
    In this paper, a detailed study of the self-alignment of BGA packages is presented. Complete self-alignment can be achieved even for a misalignment of the package of larger than 50% off the test board pad centres. A small residual displacement of the package from perfect alignment after reflow is observed. The reason for this displacement is the action of gas flow viscous drag on the package during reflow. The use of eutectic SnPb solder paste slightly reduces self-aligning ability, due to the increase in the solder volume, which reduces the restoring force. Exposure of the solder paste to a 25 C and 85% RH humidity environment also has a detrimental effect on the self-alignment of the BGA package, due to solvent evaporation and moisture absorption in the paste causing solderability degradation. The self-alignment of the package is also affected when there is slow spreading of molten solder on the pad surface. This is attributed to the reduction of restoring force due to the decrease in effective wetting surface area of the board pad

    Scanning acoustic microscopy investigation of engineered flip-chip delamination

    Get PDF
    The rapid uptake of flip-chip technology within the electronics industry, is placing the reliability of such assemblies under increasing scrutiny. A key feature of the assembly process is the application of underfill to reinforce the attachment of the die to the printed circuit board. This has been identified in numerous studies as one of the major ways in which the reliability of the devices can be improved, by mitigating the coefficient of thermal expansion mismatch between chip and board. However, in order for the underfill to be effective in coupling the die to the circuit board, its adhesion to the passivation layer of the die and the solder mask layer on the PCB must be maximised. There is a growing body of literature that indicates that poor adhesion at either interface (delamination) as a result of contamination can result in premature failure of the assembly through stress fracture of the solder joints. In order to investigate further the effect of delamination on the reliability of flip-chip assemblies, surface chemistry has been used to control the adhesion of the underfill to the die passivation. This paper reports how modification of the die surface by the application of a low surface energy coating, which prevents the strong adhesion of the underfill, has enabled the selective delamination of the device at the chip-to-underfill interface. Using scanning acoustic microscopy (SAM) the effectiveness of this treatment in creating controlled delamination before and after thermal cycling has been monitored. The ability to engineer delamination, can enable experimental studies of the mechanics of flip chip assembly failure, which complement current finite element modelling work
    corecore